Advertisement

Geotectonics

, Volume 52, Issue 2, pp 194–208 | Cite as

Similarity and Differences of Cretaceous Magmatism in the Arctic Region

  • A. A. Peyve
Article

Abstract

The paper considers Cretaceous magmatism at the continental margin of the Arctic Region. It is shown that Cretaceous igneous rocks of this region are rather heterogeneous in age, composition, and geodynamic formation setting. This differentiates them from rocks of typical large igneous provinces (LIPs). Local areas of magmatic activity, their substantial remoteness them from one another, and significant distinctions in age, composition of rocks, and formation conditions prevent us from unreservedly combining all occurrences of Cretaceous magmatism at the continental margin of the Arctic Region into a common igneous province. The stage of tholeiitic magmatism in the Svalbard Archipelago, Franz Josef Land, Arctic Canada, and the Alpha–Mendeleev Rise, which can be considered an LIP, began in the Early Cretaceous and continued for a long time, at least until the Campanian. The magmatism apparently had a plume source and was caused by extension during opening of the Canada Basin. Tholeiitic magmatism gave way to the alkaline magmatism stage from the Campanian to the onset of the Paleocene, related to continental rifting at the initial stage of formation of Eurasian Basin in the Arctic Region. No convincing evidence for a genetic link between Early Cretaceous tholeiitic and Late Cretaceous alkaline magmatism is known at present, nor for the alkaline magmatism belonging to a plume source.

Keywords

Arctic Region continental magmatism igneous province plume magmatism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barents Shelf Plate, Vol. 196 of Tr. Sevmorgeologiya, Ed. by I. S. Gramberg (Nedra, Leningrad, 1988) [in Russian].Google Scholar
  2. 2.
    A. F. Grachev, “A new view on the origin of magmatism of the Franz Josef Land,” Izv., Phys. Solid Earth 37, 744–756 (2001).Google Scholar
  3. 3.
    V. D. Dibner, “Islands of the Barents Sea,” in Geology of USSR, Vol. XXVI: Islands of Soviet Arctic: Geological Description (Nedra, Moscow, 1970), pp. 60–108.Google Scholar
  4. 4.
    Yu. V. Karyakin and E. V. Shipilov, “Geochemical specifics and 40Ar/39Ar age of the basaltoid magmatism of the Alexander Land, Northbrook, Hooker, and Hayes islands (Franz Josef Land archipelago),” Dokl. Earth Sci. 425, 260–263 (2009).CrossRefGoogle Scholar
  5. 5.
    N, Laverov, L. I. Lobkovsky, M. V. Kononov, N. L. Dobretsov, V. A. Vernikovsky, S. D. Sokolov, and E. V. Shipilov, “A geodynamic model of the evolution of the Arctic Basin and adjacent territories in the Mesozoic and Cenozoic and the outer limit of the Russian continental shelf,” Geotectonics 47, 1–30 (2013).CrossRefGoogle Scholar
  6. 6.
    A. F. Morozov, O. V. Petrov, S, Shokal’kii, S. N. Kashubin, A. A. Kremenetskii, M. Yu. Shkatov, V. D. Kaminskii, E. A. Gusev, G. E. Grikurov, P. V. Rekant, S. S. Shevchenko, S. A. Sergeev, and V. V. Shatov, “New geological data supporting the continental nature of the area of Central Arctic Rises,” Reg. Geol. Metallog., No. 53, 35–55 (2013).Google Scholar
  7. 7.
    A. A. Peyve, “Seamounts in the east of South Atlantic: Origin and correlation with Mesozoic–Cenozoic magmatic structures of West Africa,” Geotectonics 45, 195–209 (2011).CrossRefGoogle Scholar
  8. 8.
    A. A. Peyve, “The role of mantle plumes in the evolution of the African segment of Pangea and the formation of the Atlantic Ocean,” Geotectonics 49, 379–394 (2015).CrossRefGoogle Scholar
  9. 9.
    A. A. Peyve, “Tectonics and magmatism in eastern South America and the Brazil Basin of the Atlantic in the Phanerozoic,” Geotectonics 44, 60–75 (2010).CrossRefGoogle Scholar
  10. 10.
    S. D. Sokolov, M. I. Tuchkova, A. V. Ganelin, G. E. Bondarenko, and P. Layer, “Tectonics of the South Anyui Suture, Northeastern Asia,” Geotectonics 49, 3–26 (2015).CrossRefGoogle Scholar
  11. 11.
    N. M. Stolbov, “Magmatism of the Franz Josef Land archipelago,” Geodynamics, Magmatism, Sedimentogenesis, and Minerageny of Northwest Russia: Proceedings of All-Russia Conference, Petrozavodsk, Russia, 2007 (Karel. Nauchn. Tsentr Ross. Akad. Nauk, Petrozavodsk, 2007), pp. 383–387.Google Scholar
  12. 12.
    N. M. Stolbov, “Specific features of magmatism of the Franz Josef Land archipelago as reflection of its geodynamic peculiarities,” in Geological-Geophysical Characteristics of the Lithosphere in arctic Region (VNIIOkeangeologiya, St. Petersburg, 2000), Vol. 3, pp. 137–144.Google Scholar
  13. 13.
    P. I. Fedorov, G. B. Flerov, and D. I. Golovin, “New data on age and composition of volcanics in Bennett Island (East Arctic),” Dokl. Earth Sci. 401, 187–191 (2005).Google Scholar
  14. 14.
    N. I. Filatova and V. E. Khain, “Structural units of the Central Arctic and their relations to the Mesozoic Arctic plume,” Geotectonics 43, 462–485 (2009).CrossRefGoogle Scholar
  15. 15.
    E. A. Chernysheva, G. S. Kharin, and N. M. Stolbov, “Basaltic magmatism in arctic seas related to the Mesozoic activity of the Iceland plume,” Petrology 13, 289–303 (2005).Google Scholar
  16. 16.
    E. V. Shipilov and G. A. Tarasov, Regional Geology of Petroleum-Bearing Sedimentary Basins in the West Arctic Shelf of Russia (Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, Apatity, 1998) [in Russian].Google Scholar
  17. 17.
    J. C. Bailey and M. H. Rasmussen, “Petrochemistry of Jurassic and Cretaceous tholeiites from Kong Karls Land, Svalbard, and their relation to Mesozoic magmatism in the Arctic,” Polar Res. 16 (2), 37–62 (1997).CrossRefGoogle Scholar
  18. 18.
    K. Birkenmajer, K, Krajewski, Z. Pecskay, and M. W. Lorenc, “K–Ar dating of basin intrusions at Bellsund, Spitsbergen, Svalbard,” Polar Res. 31, 3–16 (2010).Google Scholar
  19. 19.
    V. Bruvoll, Y. Kristoffersen, B. J. Coakley, and J. R. Hopper, “Hemipelagic deposits on the Mendeleev and northwestern Alpha submarine ridges in the Arctic Ocean: Acoustic stratigraphy, depositional environment and an inter-ridge correlation calibrated by the ACEX results,” Mar. Geophys. Res. 31, 149–171 (2010).CrossRefGoogle Scholar
  20. 20.
    V. Bruvoll, Y. Kristoffersen, B. J. Coakley, J. R. Hopper, S. Planke, and A. Kandilarov, “The nature of the acoustic basement on Mendeleev and northwestern Alpha ridges, Arctic Ocean,” Tectonophysics 514–517, 123–145 (2012).CrossRefGoogle Scholar
  21. 21.
    K. L. Buchan and R. E. Ernst, “Giant dyke swarms and the reconstruction of the Canadian Arctic Islands, Greenland, Svalbard and Franz Josef Land,” in Dyke Swarms: Time Markers of Crustal Evolution (2006), pp. 27–48.CrossRefGoogle Scholar
  22. 22.
    K. C. Condie, “High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes?,” Lithos 79, 491–504 (2005).CrossRefGoogle Scholar
  23. 23.
    F. Corfu, S. Polteau, S. Planke, J. I. Faleide, H. Svensen, A. Zayoncheck, and N. Stolbov, “U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea large igneous province,” Geol. Mag. 150, 1127–1135 (2013).CrossRefGoogle Scholar
  24. 24.
    D. Damaske and G. N. Oakley, “Volcanogenic sandstones as aeromagnetic markers on Judge Daly Promontory and in Robeson channel, northern Nares strait,” Polarforchung 74, 9–19 (2006).Google Scholar
  25. 25.
    A. Døssing, H. R. Jackson, J. Matzka, I. Einarsson, T. M. Rasmussen, A. V. Olesen, and J. M. Brozena, “On the origin of the Amerasia basin and the High Arctic Large Igneous Province–results of new aeromagnetic data,” Earth Planet. Sci. Lett. 363, 219–230 (2013).CrossRefGoogle Scholar
  26. 26.
    A. Døssing, L. Stemmerik, T. Dahl-Jensen, and V. Schlindwein, “Segmentation of the eastern North Greenland oblique-shear margin–regional plate tectonic implications,” Earth Planet. Sci. Lett. 292, 239–253 (2010).CrossRefGoogle Scholar
  27. 27.
    P. Doubrovine, B. Steinberger, and T. H. Torsvik, “Absolute plate motions in a reference frame defined by moving hotspots in the Pacific, Atlantic and Indian oceans,” J. Geophys. Res.: Solid Earth 117 (2012). doi 10.1029/2011JB009072Google Scholar
  28. 28.
    A. F. Embry and K. G. Osadetz, “Stratigraphy and tectonic significance of Cretaceous volcanism in the Queen Elizabeth Islands, Canadian Arctic Archipelago,” Can. J. Earth Sci. 25, 1209–1219 (1988).CrossRefGoogle Scholar
  29. 29.
    R. E. Ernst and K. L. Buchan, “Giant radiating dyke swarms: Their use in identifying pre-Mesozoic large igneous provinces and mantle plumes,” in Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Vol. 100 of Am. Geophys. Union, Geophys. Monogr. Ser., Ed. by J. J. Mahoney and M. F. Coffin (1997), pp. 297–333.Google Scholar
  30. 30.
    S. Estrada, “Geochemical and Sr–Nd isotope variations within Cretaceous continental flood-basalt suites of the Canadian High Arctic, with a focus on the Hassel formation basalts of northeast Ellesmere Island,” Int. J. Earth Sci. 104, 1981–2005 (2014).CrossRefGoogle Scholar
  31. 31.
    S. Estrada and F. Henjes-Kunst, “40Ar/39Ar and U–Pb dating of Cretaceous continental rift-related magmatism on the northeast Canadian Arctic margin,” Z. Dtsch. Ges. Geowiss. 164, 107–130 (2013).Google Scholar
  32. 32.
    C. A. Evenchick, W. J. Davis, J. H. Bédard, N. Hayward, and R. M. Friedman, “Evidence for protracted High Arctic Large Igneous Province magmatism in the central Sverdrup basin from stratigraphy, geochronology and paleodepths of saucer-shaped sills,” Geol. Soc. Am. Bull. 127, 1366–1390 (2015).CrossRefGoogle Scholar
  33. 33.
    D. A. Forsyth, I. Asudeh, A. G. Green, and H. R. Jackson, “Crustal structure of the northern Alpha Ridge beneath the Arctic Ocean,” Nature 322, 349–352 (1986).CrossRefGoogle Scholar
  34. 34.
    S. A. Gibson, R. N. Thompson, and J. A. Day, “Timescales and mechanisms of plume–lithosphere interactions: 40Ar/39Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná–Etendeka large igneous province,” Earth Planet. Sci. Lett. 251, 1–17 (2006).CrossRefGoogle Scholar
  35. 35.
    A. Grantz, D. L. Clark, R. L. Phillips, S, Srivastava, C. D. Blome, L. B. Gray, H. Haga, B. L. Mamet, D. J. McIntyre, D. H. McNeil, M. B. Mickey, M.W. Mullen, B. I. Murchey, C. A. Ross, C. H. Stevens, N. J. Silberling, J. H. Wall, and D. A. Willard, “Phanerozoic stratigraphy of Northwind Ridge, magnetic anomalies in the Canada basin, and the geometry and timing of rifting in the Amerasia basin, Arctic Ocean,” Geol. Soc. Am. Bull. 110, 801–820 (1998).CrossRefGoogle Scholar
  36. 36.
    A. Grantz, P. E. Hart, and V. A. Childers, “Geology and tectonic development of the Amerasia and Canada basins, Arctic Ocean,” in Arctic Petroleum Geology, Vol. 35 of Geol. Soc. London, Mem., Ed. by A. M. Spencer, A. F. Embry, D. L. Gautier, A. V. Stoupakova, and K. Sørensen, (London, 2011), pp. 771–800.Google Scholar
  37. 37.
    P. Grogan, K. Nyberg, B. Fotland, R. Myklebust, S. Dahlgren, and F. Riis, “Cretaceous magmatism south and east of Svalbard: Evidence from seismic reflection and magnetic data,” Polarforschung 68, 25–34 (1998).Google Scholar
  38. 38.
    C. J. Hawkesworth, K. Gallagher, L. Kirstein, M. S. Mantovani, D. W. Peate, and S. P. Turner, “Tectonic controls on magmatism associated with continental break-up: An example from the Paraná–Etendeka province,” Earth Planet. Sci. Lett. 179, 335–349 (2000).CrossRefGoogle Scholar
  39. 39.
    S. M. Jowitt, M. Williamson, and R. E. Ernst, “Geochemistry of the 130 to 80 Ma Canadian High Arctic Large Igneous Province (HALIP) event and implications for Ni-Cu-PGE prospectivity,” Econ. Geol. 109, 281–307 (2014).CrossRefGoogle Scholar
  40. 40.
    C. G. Kingsbury, R. E. Ernst, B. L. Cousens, and M. Williamson, “The High Arctic LIP in Canada: Trace element and Sm–Nd isotopic evidence for the role of mantle heterogeneity and crustal assimilation,” Norw. J. Geol. 96. N. 2, 97–118 (2016).Google Scholar
  41. 41.
    D. J. Kontak, S. M. Jensen, J. Dostal, D. A. Archibald, and T. K. Kyser, “Cretaceous mafic dyke swarm, Peary Land, Northernmost Greenland: Geochronology and petrology,” Can. Mineral. 39, 997–1020 (2001).CrossRefGoogle Scholar
  42. 42.
    M. Kos’ko and E. Korago, “Review of geology of the New Siberian islands between the Laptev and the East Siberian seas, North East Russia,” in Geology, Geophysics and Tectonics of Northeastern Russia: A Tribute to Leonid Parfenov, Vol. 4 of Stephan Mueller Spec. Publ. Ser., Ed. by D. B. Stone, K. Fujita, P. W. Layer, E. L. Miller, A. V. Prokopiev, and J. Toro (2009), pp. 45–64.Google Scholar
  43. 43.
    I. Koulakov, S. C. Werner, C. Gaina, S. Medvedev, and T. H. Torsvik, “4D Arctic: A glimpse into the structure and evolution of the Arctic in the light of new geophysical maps, plate tectonics and tomographic models,” Surv. Geophys. 35, 1095–1122 (2014).CrossRefGoogle Scholar
  44. 44.
    H. D. Maher, “Manifestation of the Cretaceous High Arctic Large Igneous Province in Svalbard,” J. Geol. 109, 91–104 (2001).CrossRefGoogle Scholar
  45. 45.
    S. B. Mukasa, A. Andronikov, L. A. Mayer, and K. Brumley, “Submarine basalts from the Alpha /Mendeleev Ridge and Chukchi Borderland: Geochemistry of the first intraplate lavas recovered from the Arctic Ocean,” Geochim. Cosmochim. Acta. 73, A912 (2009).Google Scholar
  46. 46.
    R. D. Muller, J.-Y. Royer, and L. A. Lawver, “Revised plate motions relative to the hotspots from combined Atlantic and Indian ocean hotspot tracks,” Geology 16, 275–278 (1993).CrossRefGoogle Scholar
  47. 47.
    R. D. Muller, M. Sdrolias, C. Gaina, and W. R. Roest, “Age, spreading rates, and spreading asymmetry of the world’s ocean crust,” Geochem. Geophys. Geosyst. 9 (2008). doi 10.1029/2007GC001743Google Scholar
  48. 48.
    K. Nejbert, K, Krajewski, E. Dubinska, and Z. Pecskay, “Dolerites of Svalbard, north-west Barents Sea shelf: Age, tectonic setting and significance for geotectonic interpretation of the High-Arctic Large Igneous Province,” Polar Res. 30, 1–24 (2011).CrossRefGoogle Scholar
  49. 49.
    S. Nobre and G. Inês, “Geochemical constraints on the origin of cretaceous basalts from the High Arctic Large Igneous Province, Axel Heiberg island, Canada,” 2014 GSA Annual Meeting, Vancouver, Canada, 2014. https://gsa.confex.com/gsa/2014AM/webprogram/Paper247266.html. Accessed December 31, 2018.Google Scholar
  50. 50.
    T. Ntaflos and R. Wolfram, “Geochemical constraints on the origin of the continental flood basalt magmatism in Franz Josef Land, Arctic Russia,” Eur. J. Mineral. 15, 649–663 (2003).CrossRefGoogle Scholar
  51. 51.
    S. Polteau, B. W. Hendriks, S. Planke, M. Ganerød, F. Corfu, J. I. Faleide, I. Midtkandal, H. S. Svensen, and R. Myklebust, “The Early Morgan Cretaceous Barents Sea Sill Complex: Distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 83–95 (2016).CrossRefGoogle Scholar
  52. 52.
    K. Senger, J. Tveranger, K. Ogata, A. Braathen, and S. Planke, “Late Mesozoic magmatism in Svalbard: A review,” Earth-Sci. Rev. 139, 123–144 (2014).CrossRefGoogle Scholar
  53. 53.
    J. G. Shellnutt, G. M. Bhat, K. Wang, M. Yeh, and M. E., “Multiple mantle sources of the Early Permian Panjal traps, Kashmir, India,” Am. J. Sci. 315, 589–619 (2015).CrossRefGoogle Scholar
  54. 54.
    S. A. Silantyev, O. G. Bogdanovskii, P. I. Fedorov, S. F. Karpenko, and Yu. A. Kostitsyn, “Intraplate magmatism of the De Long islands: A response to the propagation of the ultraslow-spreading Gakkel ridge into the passive continental margin in the Laptev Sea,” Russ. J. Earth Sci. 6 (3), 153–183 (2004).CrossRefGoogle Scholar
  55. 55.
    D. G. Smith, W. B. Harland, N. F. Hughes, and C. A. Pickton, “The geology of Kong Karls Land, Svalbard,” Geol. Mag. 113, 193–232 (1976).CrossRefGoogle Scholar
  56. 56.
    S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Vol. 42. Geol. Soc. London, Spec. Publ., Ed. by A. D. Saunders and M. J. Norry (London, 1989), pp. 313–435.Google Scholar
  57. 57.
    J. A. Tarduno, D. B. Brinkman, P. R. Renne, R. D. Cottrell, H. Scher, and P. Castillo, “Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates,” Science 282, 2241–2243 (1998).CrossRefGoogle Scholar
  58. 58.
    P. T. Taylor, L. C. Kovacs, P. R. Vogt, and G. L. Johnson, “Detailed aeromagnetic investigation of the Arctic Basin,” J. Geophys. Res., B 86, 6323–6333 (1981).CrossRefGoogle Scholar
  59. 59.
    C. Tegner, M. Storey, P. M. Holm, S. B. Thorarinsson, X. Zhao, C. Lo, and M. F. Knudsen, “Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: 40Ar–39Ar age of Kap Washington Group volcanics, North Greenland,” Earth Planet. Sci. Lett. 303, 203–214 (2011).CrossRefGoogle Scholar
  60. 60.
    S. B. Thorarinsson, P. M. Holm, H. Duprat, and C. Tegner, “Silicic magmatism associated with Late Cretaceous rifting in the Arctic basin–petrogenesis of the Kap Kane sequence, the Kap Washington Group volcanics, North Greenland,” Lithos 125, 65–85 (2011).CrossRefGoogle Scholar
  61. 61.
    S. B. Thorarinsson, P. M. Holm, S. Tappe, L. M. Heaman, and C. Tegner, “Late Cretaceous–Palaeocene continental rifting in the High Arctic: U–Pb geochronology of the Kap Washington Group volcanic sequence, North Greenland,” J. Geol. Soc. London 168, 1093–1106 (2011).CrossRefGoogle Scholar
  62. 62.
    N. A. Van Wagoner, M. C. Williamson, P. T. Robinson, and I. L. Gibson, “First samples of acoustic basement recovered from the Alpha ridge, Arctic Ocean: New constraints for the origin of the ridge,” J. Geodyn. 6, 177–196 (1986).CrossRefGoogle Scholar
  63. 63.
    M. Villeneuve and M. Williamson, “40Ar/39Ar dating of mafic magmatism from the Sverdrup Basin Magmatic Province,” Proceedings of the 4th International Conference on Arctic Margins, Anchorage, United States, 2006, pp. 206–215.Google Scholar
  64. 64.
    P. W. Weigandl and S. M. Testa, “Petrology and geochemistry of Mesozoic dolerites from the Hinlopenstretet area, Svalbard,” Polar Res. 1, 35–52 (1982).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations