Skip to main content
Log in

Structural–Tectonic Features of the Northeastern Barents Plate from Numerical Modeling of Potential Fields

  • Published:
Geotectonics Aims and scope

Abstract

Structural–geological inhomogeneities in the northeastern Barents Sea are zoned based on an analysis of various components of the gravity and magnetic fields. The objects revealed in the basement and sedimentary cover of the Barents Sea Plate form anomalies in potential fields at coexisting complex geological structures and contrasting petrophysical properties. Cluster analysis reveals the fault-marked boundaries of individual blocks in the basement. A numerical model of faults in the sedimentary cover and basement of the Barents Sea Plate is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Aplonov, G. B. Shmelev, and D. K. Krasnov, “Geodynamics of the Barents–Kara shelf: Geophysical evidence,” Geotectonics 30, 309–326 (1996).

    Google Scholar 

  2. Seas of the Arctic and Russian Far East, Vol. 5, Pt. 1 of Geology and Mineral Resources of Russia, Ed. by I. S. Gramberg, V. L. Ivanov, and Yu. E. Pogrebitskii (VSEGEI, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  3. Barents Shelf Plate, Vol. 196 of Tr. Sevmorgeologiya, Ed. by I. S. Gramberg (Nedra, Leningrad, 1988) [in Russian].

    Google Scholar 

  4. N. A. Bogdanov, “Tectonics of the Arctic Ocean,” Geotectonics 38, 166–181 (2004).

    Google Scholar 

  5. V. I. Bondarev, Yu. P. Ershov, and B. S. Ipatov, “Tectonic evolution of the Northern Island of Novaya Zemlya,” in Geology and Stratigraphy of Novaya Zemlya (Sevmogeologiya, Leningrad, 1979), pp. 5–17.

    Google Scholar 

  6. M. L. Verba, “Crustal extension in the Barents Sea shelf,” in Natural Conditions and Resources of Northern Seas (Geogr. O-vo SSSR, Leningrad, 1977), pp. 28–32.

    Google Scholar 

  7. Geological Structure of USSR and Regularities of Mineral Resources Distribution, Vol. 9: Soviet Arctic Seas, Ed. by I. S. Gramberg and Yu. E. Pogrebitskii (Nedra, Leningrad, 1984) [in Russian].

    Google Scholar 

  8. State Geological Map of Russian Federation, Scale 1: 1000000 (New Series). Sheet R-38-40, Kolguyev. Explanatory Note, Ed. by B. G. Lopatin (VSEGEI, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  9. I. S. Gramberg, “The Barents Sea Permo–Triassic paleorift and its importance to the problem of oil and gas potential of the Barents–Kara Platform,” Dokl. Earth Sci. 353, 198–200 (1997).

    Google Scholar 

  10. I. S. Gramberg, Yu. N. Kulakov, Yu. E. Pogrebitskii, and D. S. Sorokov, “Arctic petroleum-bearing superbasin” in Petroleum-Bearing Potential and of the World Ocean (PGOSevmorgeologiya, Leningrad, 1984), pp. 7–21.

    Google Scholar 

  11. I. S. Gramberg, V. I. Bondarev, N. N. Sobolev, and L. A. Daragan-Sushchova, “Reconstruction of the geological structure of the eastern Barents Sea region from the comprehensive analysis of geological-geophysical data,” in Russian Arctic: Geological History, Minerageny, and Geology (VNIIOkeangeologiya, St. Petersburg, 2002), pp. 193–201.

    Google Scholar 

  12. V. S. Zhuravlev and M. E. Raaben, “Hypothesis about the Barentia in the light of the modern data,” in Tectonics of the East European Platform and Its Framing (Nauka, Moscow, 1975), pp. 75–92.

    Google Scholar 

  13. L. P. Zonenshain and L. M. Natapov, “Tectonic evolution of the Arctic,” in Topical Problems of Oceanic and Continental Tectonics (Nauka, Moscow, 1987), pp. 31–56.

    Google Scholar 

  14. O. N. Zuikova and E. S. Mirolyubova, “Formation conditions and petroleum-bearing perspectives of the Lower Paleozoic deposits,” in Geological-Geophysical Characteristics of the Arctic Region Lithosphere (VNIIOkeangeologiya, St. Petersburg, 2006), Vol. 6, pp. 64–75.

    Google Scholar 

  15. A. M. Karasik, “Magnetic anomalies of the Gakkel Ridge and origin of the Eurasia superbasin, Arctic Ocean,” in Geophysical Survey Methods in the Arctic (NIIGA, Leningrad, 1968), Vol. 5, pp. 9–19.

    Google Scholar 

  16. E. A. Korago and T. N. Timofeeva, Magmatism of Novaya Zemlya, Vol. 209 of Tr. NIIGA-VNIIOkeangeologiya (St. Petersburg, 2005) [in Russian].

    Google Scholar 

  17. Soviet Arctic Seas, Vol. 9 of Geological Structure of USSR and Regularities of Mineral Resources Distribution (Nedra, Leningrad, 1984) [in Russian].

  18. Novaya Zemlya and Vaigach Island: Geological Structure and Minerageny, Vol. 205 of Tr. NIIGA-VNIIOkeangeologiya (St. Petersburg, 2004) [in Russian].

  19. Islands of Soviet Arctic, Vol. XXVI of Geology of USSR (Nedra, Moscow, 1970) [in Russian].

  20. A. D. Pavlenkin, “Caledonian rifting in the Barents Sea shelf,” in Geological Structure of the Barents–Kara Shelf (PGO Sovmorgeologiya, Leningrad, 1985), pp. 29–33.

    Google Scholar 

  21. A. P. Piskaryov, Petrophysical Models of the Earth’s Crust in the Arctic Ocean, Vol. 203 of Tr. NIIGA-VNIIOkeangeologiya (St. Petersburg, 2004) [in Russian].

    Google Scholar 

  22. Yu. E. Pogrebitskii, “Geodynamic system of the Arctic Ocean and its structural evolution,” Sov. Geol., No. 12, 3–28 (1976).

    Google Scholar 

  23. T. S. Sakulina, M. L. Verba, N. M. Ivanova, Yu. V. Roslov, and I. V. Belyaev, “Deep structure of the northern Barents–Kara region along the 4-AR profile,” in Proceedings of the 7th Forum “Fuel and Energy Complex of Russia” (St. Petersburg, 2007), pp. 371–374.

    Google Scholar 

  24. Tectonic Map of the Barents Sea and Northern European Part of Russia, Scale 1: 2500000, Ed. by N. A. Bogdanov V. E. Khain, V. I. Bogatskii, S. L. Kostyuchenko, B. V. Senin, E. V. Shipilov, and S. F. Sobolev (PKO Kartografiya, Moscow, 1996).

    Google Scholar 

  25. N. I. Timonin, Pechora Plate: Geological Evolution in the Phanerozoic (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  26. V. I. Ustritskii, “Tectonic nature of the Barents–North Kara megatrough,” in Problems of Petroleum-Bearing Potential of the World Ocean (Moscow, 1989), pp. 182–191.

    Google Scholar 

  27. V. I. Ustritskii and A. I. Khramov, “Geological evolution of the Arctic from the plate tectonic point of view,” in Soviet Arctic Seas, Vol. 9 of Geological Structure of USSR and Regularities of Mineral Resources Distribution (Leningrad, 1984), pp. 235–265.

    Google Scholar 

  28. M. D. Khutorskoi, V. R. Akhmedzyanov, A. V. Ermakov, Yu. G. Leonov, L. V. Podgornykh, B. G. Polyak, E. A. Sukhikh, and L. A. Tsybulya, Geothermy of the Arctic Seas (GEOS, Moscow, 2013) [in Russian].

    Google Scholar 

  29. M. D. Khutorskoi and B. G. Polyak, “Role of radiogenic heat generation in surface heat flow formation,” Geotectonics 50, 179–195 (2016).

    Article  Google Scholar 

  30. L. A. Tsybulya, V. G. Levashkevich, O. A Zalivchii, and I. V. Shkola, “Heat flow in the Kara Sea and on its islands,” Geol. Geofiz., No. 11, 93–98 (1994).

    Google Scholar 

  31. B. K. Bhattacharya, “Continuous spectrum of the total magnetic field anomaly due to a rectangular prismatic body,” Geophysics 31, 97–121 (1966).

    Article  Google Scholar 

  32. J. P. Burg, Unpublished Doctoral Dissertation (Stanford Univ., 1975).

    Google Scholar 

  33. V. K. Gupta and F. S. Grant, “Mineral exploration aspects of gravity and aeromagnetic survey in Sudbury-Cobalt area, Ontario,” in The Utility of Regional Gravity and Magnetic Anomaly Maps, Ed. by W. J. Hinze (1985), pp. 392–411.

    Chapter  Google Scholar 

  34. I. N. Macleod, S. Vierra, and A. C. Chaves, “Analytic signal and reduction-to-the-pole in the interpretation of total magnetic field data at low magnetic latitudes,” in Proceedings of the Third International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, 1993.

    Google Scholar 

  35. J. H. McClellan and H. Nawab, “Complex General-N Winograd Fourier Transform Algorithm (WFTA),” in Programs for Digital Signal Processing (IEEE Press, 1979), pp. 1.7-1–1.7-10.

    Google Scholar 

  36. A. Spector and F. S. Grant, “Statistical models for interpreting aeromagnetic data,” Geophysics 35, 293–302 (1970).

    Article  Google Scholar 

  37. S. Winograd, “On computing the discrete Fourier transform,” Math. Comput. 32, 175–199 (1978).

    Article  Google Scholar 

  38. Oasis montaj, Geosoft Software. http://www.geosoft. com/ru. Accessed March 5, 2017.

  39. COSCAD-3D software complex for spectral correlation analysis of data. http://coscad3d.ru/. Accessed March 5, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Nikitin.

Additional information

Original Russian Text © D.S. Nikitin, P.P. Gorskikh, M.D. Khutorskoy, D.A. Ivanov, 2018, published in Geotektonika, 2018, No. 2, pp. 58–75.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, D.S., Gorskikh, P.P., Khutorskoy, M.D. et al. Structural–Tectonic Features of the Northeastern Barents Plate from Numerical Modeling of Potential Fields. Geotecton. 52, 209–224 (2018). https://doi.org/10.1134/S0016852118020085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852118020085

Keywords

Navigation