Advertisement

Geotectonics

, Volume 52, Issue 2, pp 251–265 | Cite as

Finite Strain Analysis of the Wadi Fatima Shear Zone in Western Arabia, Saudi Arabia

  • O. M. K. Kassem
  • Z. Hamimi
Article
  • 31 Downloads

Abstract

Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes (Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.

Keywords

Finite strain analysis volcanosedimentary sequence Wadi Fatima Shear Zone (WFSZ) Western Arabia Saudi Arabia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. A. Abd-Allah, A. H. Ahmed, A. El-Fakharani, E. K. El-Sawy, and K. A. Ali, “Fatima suture: A new amalgamation zone in the western Arabian Shield, Saudi Arabia,” Precambrian Res. 249, 57–78 (2014).CrossRefGoogle Scholar
  2. 2.
    M. M. A. Al-Gabali, MS Thesis (King Abdulaziz University, 2012).Google Scholar
  3. 3.
    A. M. Al-Saleh and O. M. K. Kassem, “Microstructural, strain analysis and 40Ar/39Ar evidence for the origin of the Mizil gneiss dome, Eastern Arabian Shield, Saudi Arabia,” J. Afr. Earth Sci. 70, 24–35 (2012).CrossRefGoogle Scholar
  4. 4.
    A. M. S. Al-Shanti, Oolitic Iron Ore Deposits in Wadi Fatima: Between Jeddah and Mecca, Saudi Arabia, Vol. 2 of Min. Res. Bull. (Minist. Pet. Miner. Resour., 1966).Google Scholar
  5. 5.
    A. M. S. Al-Shanti, Geology of the Arabian Shield of Saudi Arabia (Scientific Publishing Center, Jeddah, 2009).Google Scholar
  6. 6.
    M. B. Alsubhi, MS Thesis (King Abdulaziz University, Jeddah, 2012).Google Scholar
  7. 7.
    C. M. Bailey, C. Simpson, and D. G. De Paor, “Volume loss and tectonic flattening strain in granitic mylonites from the Blue Ridge Province, Central Appalachians,” J. Struct. Geol. 10, 1403–1416 (1994).CrossRefGoogle Scholar
  8. 8.
    A. N. Basahel, A. Bahafzalah, S. Omara, and U. Jux, “Early Cambrian carbonate platform of the Arabian Shield,” Neues Jahrb. Geol. Palaeontol., Monatsh. 2, 113–128 (1984).Google Scholar
  9. 9.
    F. B. Davies, “Strain analysis of wrench faults and collision tectonics of the Arabian–Nubian Shield,” J. Geol. 82, 37–53 (1984).CrossRefGoogle Scholar
  10. 10.
    D. Flinn, “On folding during three-dimensional progressive deformation,” Quat. J. Geol. Soc. London 118, 385–433 (1962).CrossRefGoogle Scholar
  11. 11.
    D. L. Grainger, “The late Proterozoic Fatima Group near Jeddah,” GeoArabia 6, 103–114 (2001).Google Scholar
  12. 12.
    Z. Hamimi, O. M. K. Kassem, and M. N. El-Sabrouty, “Kinematic analysis technique for deformed lithologies in Al Amar suture, Eastern Arabian Shield,” Geotectonics 49, 439–450 (2015).CrossRefGoogle Scholar
  13. 13.
    Z. Hamimi, E. K. El-Sawy, A. El-Fakharani, M. Matsah, A. Shujoon, and M. K. El-Shafei, “Neoproterozoic structural evolution of the NE-trending 620–540Ma Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia,” J. Afr. Earth Sci. 99, 51–63 (2014).CrossRefGoogle Scholar
  14. 14.
    Z. Hamimi, E. K. El-Sawy, M. Matsah, A. Shujoon, and M. Al-Gabali, “The NE-oriented Wadi Fatima Fault Zone, near Jeddah, Saudi Arabia: A possible arc–arc suture in Western Arabian Shield,” Proceeding of the 25th Colloquium of African Geology, CAG25, Dar es Salaam, Tanzania, 2014.Google Scholar
  15. 15.
    Z. Hamimi, M. Matsah, M. El-Shafei, A. El-Fakharani, A. Shujoon, and M. Al-Gabali, “Wadi Fatima thinskinned foreland FAT Belt: A post amalgamation marine basin in the Arabian Shield,” Open J. Geol. 2, 271–293 (2012).CrossRefGoogle Scholar
  16. 16.
    J. R. Hossack, “Pebble deformation and thrusting in the Bygdin area (Southern Norway),” Tectonophysics 5, 315–339 (1968).CrossRefGoogle Scholar
  17. 17.
    P. R. Johnson, M. G. Abdelsalam, and R. J. Stern, “The Bi’r Umq-Nakasib suture zone in the Arabian–Nubian Shield: A key to understanding crustal growth in the East African Orogen,” Gondwana Res. 6, 523–530 (2003).CrossRefGoogle Scholar
  18. 18.
    P. R. Johnson and F. Kattan, “Oblique sinistral transpression in the Arabian shield: The timing and kinematics of a Neoproterozoic suture zone,” Precambrian Res. 107, 117–138 (2001).CrossRefGoogle Scholar
  19. 19.
    O. M. K. Kassem, L. A. A. Almutairi, A. M. Al Bassam, and H. J. Al Faifi, “Relationship between finite Strain and tectonic setting in the Ar Ruwaydah area, eastern Arabian Shield, Saudi Arabia,” Arab. J. Geosci. 9 (19), Article No. 728 (2016).Google Scholar
  20. 20.
    O. M. K. Kassem, “Kinematic vorticity technique for porphyroclasts in the metamorphic rocks: An example from the Northern thrust in Wadi Mubarak belt, Eastern Desert, Egypt,” Arab. J. Geosci. 5, 159–167 (2012).CrossRefGoogle Scholar
  21. 21.
    O. M. K. Kassem, “Kinematic analysis of the Migif area in the Eastern Desert of Egypt,” J. Afr. Earth Sci. 90, 136–149 (2014).CrossRefGoogle Scholar
  22. 22.
    O. M. K. Kassem, “Strain analysis and deformation in the Tanumah Area, Arabian Shield, Saudi Arabia,” Arab. J. Geosci. 8, 4127–4138 (2015).CrossRefGoogle Scholar
  23. 23.
    O. M. K. Kassem, “Determining heterogeneous deformation for Granitic rocks in the Northern thrust in Wadi Mubark belt, Eastern Desert, Egypt,” Geotectonics 45, 244–254 (2011).CrossRefGoogle Scholar
  24. 24.
    O. M. K. Kassem, S. H. Abd El Rahim, and E. R. El Nashar, “Strain analysis and microstructural evolution characteristic of Neoproterozoic rocks associations of Wadi El Falek, Centre Eastern Desert, Egypt,” Geotectonics 46, 379–388 (2012).CrossRefGoogle Scholar
  25. 25.
    O. M. K. Kassem and S. H. Abdel Raheim, “Finite strain analysis for the metavolcanic-sedimentary rocks in the Gabel El-Mayet region, Central Eastern Desert, Egypt,” J. Afr. Earth Sci. 58, 321–330 (2010).CrossRefGoogle Scholar
  26. 26.
    O. M. K. Kassem and Z. Hamimi, “Application of finite strain technique for deformed lithologies in Al Amar suture, Eastern Arabian Shield,” Open Geol. J. 8, 97–106 (2014). doi 10.2174/1874262901408010097CrossRefGoogle Scholar
  27. 27.
    O. M. K. Kassem and U. Ring, “Underplating-related finite-strain patterns in the Gran Paradiso massif, Western Alps, Italy: Heterogeneous ductile strain superimposed on a nappe stack,” J. Geol. Soc. (London, U. K.) 161, 875–884 (2004).CrossRefGoogle Scholar
  28. 28.
    S. Khomsi, A. Smadi, M. Matsah, and M. El-Shafei, “Structural style of the Wadi Fatima area in Eastern Jeddah on the border of the Arabian Shield: Insightful thrust mechanisms,” 10th International Conference of Jordanian Geologists Association, Amman, Jordan, 2011, p. 41.Google Scholar
  29. 29.
    M. I. Matsah, M. H. T. Qari, A. M. Hegazi, M. A. Amlas, and Z. Hamimi, “The Neoproterozoic Ad-Damm Shear Zone: Dextral transpression in the Arabian Shield, Saudi Arabia,” Egypt. J. Geol. 48, 215–236 (2004).Google Scholar
  30. 30.
    T. A. Moore and M. H. Al-Rehaili, Geological Map of the Makkah Quadrangle, Sheet 21D, Kingdom of Saudi Arabia, Map GM107 (Saudi Arabian Directorate General of Mineral Resources, 1989).Google Scholar
  31. 31.
    K. Nebert, A. A. Alshaibi, M. Awlia, I. Bounny, Z. A. Nawab, O. H. Sharief, O. A. Sherbini, and A. H. Yeslam, Geology of the area north of Wadi Fatima, Kingdom of Saudi Arabia, No. 1 of Bull. Centre Appl. Geol. (Jeddah, Saudi Arabia) (1974).Google Scholar
  32. 32.
    K. O’Hara, “State of strain in mylonites from the western Blue Ridge province, Southern Appalachians: The role of volume loss,” J. Struct. Geol. 12, 419–430 (1990).CrossRefGoogle Scholar
  33. 33.
    W. H. Owens, “The calculation of a best-fit ellipsoid from elliptical sections on arbitrarily oriented planes,” J. Struct. Geol. 6, 571–578 (1984).CrossRefGoogle Scholar
  34. 34.
    C. W. Passchier and R. A. Trouw, Microtectonics (Springer, Berlin, 1995).Google Scholar
  35. 35.
    C. J. Peach and R. J. Lisle, “A FORTRAN IV program for the analysis of tectonic strain using deformed elliptical markers,” Comput. Geosci. 5, 325–334 (1979).CrossRefGoogle Scholar
  36. 36.
    J. G. Ramsay, Folding and Fracturing of Rocks (McGraw Hill, London, 1967).Google Scholar
  37. 37.
    J. G. Ramsay and M. I. Huber, The Techniques of Modern Structural Geology, Vol. 1: Strain Analysis (Academic Press, London, 1983).Google Scholar
  38. 38.
    U. Ring, “Exhumation of blue schists from Samos Island,” Geol. Soc. Greece Bull. 32, 97–104 (1998).Google Scholar
  39. 39.
    U. Ring and O. M. K. Kassem, “The nappe rule: Why does it work?,” J. Geol. Soc. (London, U. K.) 164, 1109–1112 (2007).CrossRefGoogle Scholar
  40. 40.
    C. Simpson and D. G. De Poar, “Strain and kinematic analysis in general shear zones,” J. Struct. Geol. 15, 1–20 (1993).CrossRefGoogle Scholar
  41. 41.
    R. Stern, “The Najd Fault System, Saudi Arabia and Egypt: A Late Precambrian rift-related transform system?,” Tectonics 4, 497–511 (1985).CrossRefGoogle Scholar
  42. 42.
    R. J. Stern and P. R. Johnson, “Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis,” Earth-Sci. Rev. 101, 29–67 (2010).CrossRefGoogle Scholar
  43. 43.
    D. B. Stoeser and V. E. Camp, “Pan-African microplate accretion of the Arabian Shield,” Geol. Soc. Am. Bull. 96, 817–826 (1985).CrossRefGoogle Scholar
  44. 44.
    Y. A. Al-Amri and O. M. K. Kassem, “The effect of finite strain and deformation history of Halaban area, eastern Arabian Shield, Saudi Arabia,” Arab. J. Geosci. 10 (2), Article No. 32 (2017).Google Scholar
  45. 45.
    F. A. R. Zakir and A. R. Moustafa, “Structural setting of Jabal Abu Ghurrah Area, Wadi Fatima, West Central Saudi Arabia,” J. King Abdulaziz Univ.: Earth Sci. 5, 177–201 (1992).Google Scholar
  46. 46.
    EllipseFit 2 software, Frederick W. Vollmer’s page, 2010. http://www.frederickvollmer.com/ellipsefit/index.html. Accessed December 31, 2017.Google Scholar
  47. 47.
    Strain and shear calculator 3.2, Rod Holocombe structural geology software and tools, 2009. http://www. holcombe.net.au/software. Accessed December 31, 2017.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of Geology, Faculty of ScienceKing Saud University (SGSRC)RiyadhSaudi Arabia
  2. 2.Geology DepartmentNational Research CenterDokki, CairoEgypt
  3. 3.Geology Department, Faculty of ScienceBahna UniversityBenhaEgypt

Personalised recommendations