, Volume 52, Issue 2, pp 281–296 | Cite as

Deformation Mechanisms of Darreh Sary Metapelites, Sanandaj‒Sirjan Zone, Iran

  • O. Hemmati
  • S. M. Tabatabaei ManeshEmail author
  • A. R. Nadimi


The Darreh Sary metapelitic rocks are located in the northeast of Zagros orogenic belt and Sanandaj-Sirjan structural zone. The lithological composition of these rocks includes slate, phyllite, muscovitebiotite schist, garnet schist, staurolite-garnet schist and staurolite schist. The shale is the protolith of these metamorphic rocks, which was originated from the continental island arc tectonic setting and has been subjected to processes of Zagros orogeny. The deformation mechanisms in these rocks include bulging recrystallization (BLG), subgrain rotation recrystallization (SGR) and grain boundary migration recrystallization (GBM), which are considered as the key to estimate the deformation temperature of the rocks. The estimated ranges of deformation temperature and depth in these rocks show the temperatures of 275–375, 375–500, and >500°C and the depths of 10 to 17 km. The observed structures in these rocks such as faults, fractures and folds, often with the NW-SE direction coordinate with the structural trends of Zagros orogenic belt structures. The S-C mylonite fabrics is observed in these rocks with other microstructures such as mica fish, σ fabric and garnet deformation indicate the dextral shear deformation movements of study area. Based on the obtained results of this research, the stages of tectonic evolution of Darreh Sary area were developed.


Metapelite Deformation mechanisms Darreh Sary Sanandaj-Sirjan zone Neotethys Iran 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1: 100000 Golpayegan Geology Map (Geol. Surv. Iran, Tehran, 1992) [in Persian].Google Scholar
  2. 2.
    P. Agard, J. Omrani, L. Jolivet, and F. Mouthereau, “Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation,” Int. J. Earth Sci. 94, 401–419 (2005).CrossRefGoogle Scholar
  3. 3.
    P. Agard, J. Omrani, L. Jolivet, H. Whitechurch, B. Vrielynck, W. Spakman, P. Monié, B. Meyer, and R. Wortel, “Zagros orogeny: A subduction-dominated process,” Geol. Mag. 148, 1–34 (2011).CrossRefGoogle Scholar
  4. 4.
    A. Aghanabati, Geology of Iran (Geol. Surv. Iran, Tehran, 2004) [in Persian].Google Scholar
  5. 5.
    M. Alavi and M. A. Mahdavi, “Stratigraphy and structures of the Nahavand region in western Iran and their implications for the Zagros tectonics,” Geol. Mag. 131, 43–47 (1994).CrossRefGoogle Scholar
  6. 6.
    M. Allen, J. Jackson, and R. Walker, “Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates,” Tectonics 23 (2004). doi 10.1029/2003TC001530Google Scholar
  7. 7.
    U. Altenberger and S. Wilhelm, “Ductile deformation of K-feldspar in dry eclogite facies shear zones in the Bergen Arcs, Norway,” Tectonophysics 320, 107–121 (2000).CrossRefGoogle Scholar
  8. 8.
    D. M. Bachmanov, V. G. Trifonov, K. T. Hessami, A. I. Kozhurin, T. P. Ivanova, E. A. Rogozhin, M. C. Hademi, and F. H. Jamali, “Active faults in the Zagros and central Iran,” Tectonophysics 380, 221–241 (2004).CrossRefGoogle Scholar
  9. 9.
    J. E. Baily and P. B. Hirsch, “The recrystallization process in some polycrystalline metals,” Proc. R. Soc. London A 267, 11–30 (1962). doi 10.1098/rspa.1962.0080CrossRefGoogle Scholar
  10. 10.
    P. Ballato, A. Mulch, A. Landgraf, M. R. Strecker, M. C. Dalconi, A. Friedrich, and S. H. Tabatabaei, “Middle to late Miocene Middle Eastern climate from stable oxygen and carbon isotope data, southern Alborz mountains, N Iran,” Earth Planet. Sci. Lett. 300, 125–38 (2010).CrossRefGoogle Scholar
  11. 11.
    M. R. Bathia and K. A. W. Crook, “Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins,” Contrib. Mineral. Petrol. 92, 181–193 (1986).CrossRefGoogle Scholar
  12. 12.
    F. Berberian and M. Berberian, “Tectono-plutonic episodes in Iran,” in Zagros Hindu Kush, Himalaya: Geodynamic Evolution, Vol. 3 of Am. Geophys. Union, Geodyn. Ser., Ed. by H. K. Gupta and F. M. Delany (Am. Geophys. Union, Washington, DC, 1981), pp. 5–32.CrossRefGoogle Scholar
  13. 13.
    M. Berberian, “The southern Caspian, a compressional depression floored by a trapped, modified oceanic crust,” Can. J. Earth Sci. 20, 163–183 (1983).CrossRefGoogle Scholar
  14. 14.
    M. Berberian and G. C. P. King, “Towards a paleogeography and tectonic evolution of Iran,” Can. J. Earth Sci. 18, 1764–1796 (1981).CrossRefGoogle Scholar
  15. 15.
    D. Berthe, P. Choukroune, and P. Jegouzo, “Orthogeneiss mylonite and non-coaxial deformation of granites: The example of the South American shear zone,” J. Struct. Geol. 1, 31–42 (1979).CrossRefGoogle Scholar
  16. 16.
    M. G. Best, Igneous and Metamorphic Petrology (Blackwell, 2003).Google Scholar
  17. 17.
    S. Beygi, A. Nadimi, and H. Safaei, “Tectonic history of seismogenic fault structures in Central Iran,” J. Geosci. 61, 127–144 (2016).CrossRefGoogle Scholar
  18. 18.
    K. Bucher and M. Frey, Petrogenesis of Metamorphic Rocks (Springer, New York, 2002).CrossRefGoogle Scholar
  19. 19.
    M. R. Drury, F. J. Humphreys, and S. H. White, “Large strain deformation studies using polycrystalline magnesium as a rock analogue. Part II: Dynamic recrystallization mechanisms at high temperatures,” Phys. Earth Planet. Inter. 40, 208–222 (1985).CrossRefGoogle Scholar
  20. 20.
    Z. Ebrahimiyan, G.Torabi, J. Ahmadian, and H. Baharzadeh, “Petrology of Mesr granitoid complex (NE of Isfahan Province),” Iran. J. Petrol. 2 (6), 1–16 (2011).Google Scholar
  21. 21.
    J. Eftekharnejad, “Separation the various zones of Iran with structural condition, associated with sedimentary basins,” Bull. Iran. Pet. Inst. 82, 19–28 (1980).Google Scholar
  22. 22.
    N. L. Falcon, “Southern Iran: Zagros Mountains,” in Mesozoic-Cenozoic Orogenic Belts: Data for Orogenic Studies, Vol. 4 of Geol. Soc. London, Spec. Publ., Ed. by A. M. Spencer (London, 1974), pp. 199–211.Google Scholar
  23. 23.
    D. A. Ferrill, “Calcite twin widths and intensities as metamorphic indicators in natural low-temperature deformation of limestone,” J. Struct. Geol. 13, 667–675 (1991).CrossRefGoogle Scholar
  24. 24.
    D. A. Ferrill, A. P. Morris, M. A. Evans, and M. Burkhard, “Calcite twin morphology: A low-temperature deformation geothermometer,” J. Struct. Geol. 11, 421–431 (2004).CrossRefGoogle Scholar
  25. 25.
    H. Fossen, Structural Geology (Cambridge Univ. Press, Cambridge, 2010).CrossRefGoogle Scholar
  26. 26.
    D. Garcia, M. Fonteilles, and J. Moutte, “Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites,” J. Geol. 102, 411–422 (1994).CrossRefGoogle Scholar
  27. 27.
    R. M. Garrels and F. T. Mackenzie, Evolution of Sedimentary Rocks (Norton, New York, 1971)Google Scholar
  28. 28.
    Geological Map of Iran (N.I.O.C. Explor. Prod., Tehran, 1975–1976).Google Scholar
  29. 29.
    A. Ghasemi and C. J. Talbot, “A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran),” J. Asian Earth Sci. 26, 683–693 (2005).CrossRefGoogle Scholar
  30. 30.
    J. Golonka, “Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic,” Tectonophysics 381, 235–273 (2004).CrossRefGoogle Scholar
  31. 31.
    M. Guillopé and J. P. Poirier, “Dynamic recrystallization during creep of single-crystalline halite: An experimental study,” J. Geophys. Res., B 84, 5557–5567 (1979).CrossRefGoogle Scholar
  32. 32.
    S. J. Haynes and H. McQuillan, “Evolution of the Zagros Suture Zone, Southern Iran,” Geol. Soc. Am. Bull. 85, 739–44 (1974).CrossRefGoogle Scholar
  33. 33.
    G. Hirth and J. Tullis, “Dislocation creep regimes in quartz aggregates,” J. Struct. Geol. 14, 145–159 (1992).CrossRefGoogle Scholar
  34. 34.
    FaultKin 7 software, Cornell University. http://www. html. Accessed December 31, 2017.Google Scholar
  35. 35.
    Stereonet 7 software, Cornell University. http://www. Accessed December 31, 2017.Google Scholar
  36. 36.
    P. Jerabek, H. Stunitz, R. Heilbronner, O. Lexa, and K. Schulmann, “Microstructural-deformation record of an orogen-parallel extension in the Vepor Unit, West Carpathians,” J. Struct. Geol. 29, 1722–1743 (2007).CrossRefGoogle Scholar
  37. 37.
    S. Karimi, PhD Thesis (Univ. Isfahan, Isfahan, 2012) [in Persian].Google Scholar
  38. 38.
    S. Karimi, S. M. Tabatabaei Manesh, H. Safaei, and M. Sharifi, “Metamorphism and deformation of Golpayegan metapelitic rocks, Sanandaj–Sirjan Zone, Iran,” Petrology 20, 658–675 (2012).CrossRefGoogle Scholar
  39. 39.
    G. E. Lloyd and B. Freeman, “Dynamic recrystallization of quartz under greenschist condition,” J. Struct. Geol. 16, 6, 867–881 (1994).CrossRefGoogle Scholar
  40. 40.
    G. S. Lister and A. W. Snoke, “S–C mylonites,” J. Struct. Geol. 6, 617–638 (1984).CrossRefGoogle Scholar
  41. 41.
    N. S. Mancktelow and G. Pennacchioni, “The control of precursor brittle fracture and fluid-rock interaction on the development of single and paired ductile shear zones,” J. Struct. Geol. 27, 645–661 (2005).CrossRefGoogle Scholar
  42. 42.
    M. Mohajjel and C. L. Fergusson, “Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan Zone, western Iran,” J. Struct. Geol. 22, 1125–1139 (2000).CrossRefGoogle Scholar
  43. 43.
    M. Mohajjel, C. L. Fergusson, and M. R. Sahandi, “Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran,” J. Asian Earth Sci. 21, 397–412 (2003).CrossRefGoogle Scholar
  44. 44.
    E. Moosavi and M. Mohajjel, “Structure of shear zone and folds interference patterns in North Esfajerd, Sanandaj–Sirjan Zone,” J. Geosci. 91, 119–130 (2012).Google Scholar
  45. 45.
    C. K. Morley, B. Kongwung, A. A. Julapour, M. Abdolghafourian, M. Hajian, D. Waples, J. Warren, H. Otterdoom, K. Srisuriyon, and H. Kazemi, “Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in the Qom-Saveh area,” Geosphere 5, 325–362 (2009).CrossRefGoogle Scholar
  46. 46.
    A. Nadimi, PhD Thesis (Univ. Warsaw, Warsaw, 2010).Google Scholar
  47. 47.
    A. Nadimi, “Structural analysis of the Hasan-Robat marbles as traces of folded basement in the Sanandaj–Sirjan Zone, Iran,” Geotectonics 46, 6, 560–578 (2015).CrossRefGoogle Scholar
  48. 48.
    A. Nadimi and A. Konon, “Gaw-Khuni Basin: An active stepover structure in the Sanandaj–Sirjan Zone, Iran,” Geol. Soc. Am. Bull. 124, 484–498 (2012).CrossRefGoogle Scholar
  49. 49.
    A. Nadimi and H. Nadimi, “Active tectonics of the South Shahreza, N. Zagros Mountains, Iran,” 6th International Conference on the Geology of the Middle East: United Arab Emirates University Publication, Abstracts (2006), p. 272.Google Scholar
  50. 50.
    A. Nadimi and H. Nadimi, “Exhumation of old rocks during the Zagros collision in the northwestern part of the Zagros Mountains, Iran,” in Investigations into the Tectonics of the Tibetan Plateau, Vol. 444 of Geol. Soc. Am. Spec. Pap., Ed. by B. C. Burchfiel and E. Wang. (2008), pp. 105–122.Google Scholar
  51. 51.
    G. Nichols, Sedimentology and Stratigraphy, 2nd ed. (Wiley–Blackwell, Chichester, 2009).Google Scholar
  52. 52.
    O. Nishikawa and T. Takeshita, “Progressive lattice misorientation and microstructural development in quartz veins deformed under subgreenschist conditions,” J. Struct. Geol. 22, 259–276 (2000).CrossRefGoogle Scholar
  53. 53.
    O. Nishikawa, K. Saiki, and H. R. Wenk, “Intra-granular strains and grain boundary morphologies of dynamically recrystallized quartz aggregates in a mylonite,” J. Struct. Geol. 26, 127–141 (2004).CrossRefGoogle Scholar
  54. 54.
    M. W. Nyman, R. D. Law, and E. Smelik, “Cataclastic deformation mechanism for the development of coremantle structures in amphibole,” Geology 20, 455–458 (1992).CrossRefGoogle Scholar
  55. 55.
    T. Okudaira, T. Takeshita, M. Toriumi, and J. H. Kruhl, “Prism- and basal-plane parallel subgrain boundaries in quartz: A microstructural geothermobarometer,” J. Metamorph. Geol. 16, 141–146 (1998).CrossRefGoogle Scholar
  56. 56.
    C. W. Passchier and R. A. J. Trouw, Microtectonics, 2nd ed. (Springer, Berlin, 2005).Google Scholar
  57. 57.
    H. Philip, A. Cisternas, A. Gvishiani, and A. Gorshkov, “The Caucasus: An actual example of the initial stages of a continental collision,” Tectonophysics 161, 1–21 (1989).CrossRefGoogle Scholar
  58. 58.
    J. G. Ramsay, “Shear zone geometry: A review,” J. Struct. Geol. 2, 83–101 (1980).CrossRefGoogle Scholar
  59. 59.
    J. G. Ramsay and M. I. Huber, The Techniques of Modern Structural Geology, Vol. 1: Strain Analysis (Academic Press, London, 1983).Google Scholar
  60. 60.
    L. E. Ricou, “The growing ophiolite perioral, a belt plies establishment in Upper Cretaceous,” Rev. Geogr. Phys. Geol. Dyn. 13, 327–50 (1971).Google Scholar
  61. 61.
    A. H. Robertson, “Mesozoic–Tertiary tectonic-sedimentary evolution of a south Tethyan oceanic basin and its margins in southern Turkey,” in Tectonics and Magmatism in Turkey and the Surrounding Area, Vol. 173 of Geol. Soc. London, Spec. Publ., Ed. by E. Bozkurt, J. A. Winchester, and J. D. A. Piper (2000), pp. 97–138.Google Scholar
  62. 62.
    J. Sapkota and I. V. Sanislav, “Preservation of deep Himalayan PT conditions that formed during multiple events in garnet cores: Mylonitization produces erroneous results for rims,” Tectonophysics 587, 89–106 (2013).CrossRefGoogle Scholar
  63. 63.
    K. Sarkarinejad and A. Alizadeh, “Dynamic model for the exhumation of the Tutak gneiss dome within a bivergent wedge in the Zagros Thrust System of Iran,” J. Geodyn. 47, 201–209 (2009).CrossRefGoogle Scholar
  64. 64.
    N. Shigematsu, “Dynamic recrystallization in deformed plagioclase during progressive shear deformation,” Tectonophysics 305, 437–452 (1999).CrossRefGoogle Scholar
  65. 65.
    M. Stipp, H. Stunitz, R. Heilbronner, and S. M. Schmid, “The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C,” J. Struct. Geol. 24, 1861–1884 (2002).CrossRefGoogle Scholar
  66. 66.
    J. Stöcklin, “Structural history and tectonics of Iran: A review,” AAPG Bull. 52, 1229–1258 (1968).Google Scholar
  67. 67.
    S. M. Tabatabaei Manesh, Petrography and Petrology of the Metamorphic Rocks (Publ. Jahad Daneshgahi Isfahan branch, Isfahan, 2012) [in Persian].Google Scholar
  68. 68.
    O. Thiele, M. Alavi, R. Assefi, A. Hushmand-Zadeh, K. Seyed-Emami, and M. Zahedi, Golpaygan Quadrangle Map (1: 250000) with Explanatory Text (Geol. Surv. Iran, Tehran, 1968).Google Scholar
  69. 69.
    G. Torabi, “Chromitite potential in mantle peridotites of the Jandaq ophiolite (Isfahan province, Central Iran),” C. R. Geosci. 341, 982–992 (2009).CrossRefGoogle Scholar
  70. 70.
    G. Torabi, S. Arai, and J. Koepke, “Metamorphosed mantle peridotites from Central Iran (Jandaq area, Isfahan province),” Neues Jahrb. Geol. Palaeontol., Abh. 261, 129–150 (2011).CrossRefGoogle Scholar
  71. 71.
    C. Trepmann, A. Lenze, and B. Stockhert, “Static recrystallization of vein quartz pebbles in a high-pressure–low-temperature metamorphic conglomerate,” J. Struct. Geol. 32, 202–215 (2010).CrossRefGoogle Scholar
  72. 72.
    V. G. Trifonov, “Collision and mountain building,” Geotectonics 50, 1–20 (2016).CrossRefGoogle Scholar
  73. 73.
    J. Urai, W. D. Means, and G. S. Lister, “Dynamic recrystallization of minerals,” in Mineral and Rock Deformation: Laboratory Studies, Vol. 36 of Am. Geophys. Union, Geophys. Monogr. Ser., Ed. by H. C. Heard and B. E. Hobbs, (1986), pp. 161–199.CrossRefGoogle Scholar
  74. 74.
    R. H. Vernon, A Practical Guide to Rock Microstructure (Cambridge Univ. Press, Cambridge, 2006).Google Scholar
  75. 75.
    S. J. Vincent, M. B. Allen, A. D. Ismail Zadeh, R. Flecker, K. A. Foland, and M. D. Simmons, “Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region,” Geol. Soc. Am. Bull. 117, 1513–33 (2005).CrossRefGoogle Scholar
  76. 76.
    H. G. F. Winkler, Petrogenesis of Metamorphic Rocks, 4th ed. (Springer, New York, 1976).CrossRefGoogle Scholar
  77. 77.
    J. C. White and S. H. White, “Semi-brittle deformation within the Alpine fault zone, New Zealand,” J. Struct. Geol. 5, 579–589 (1983).CrossRefGoogle Scholar
  78. 78.
    D. L. Whitney and B. W. Evans, “Abbreviations for names of rock-forming minerals,” Am. Mineral. 95, 185–187 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. Hemmati
    • 1
  • S. M. Tabatabaei Manesh
    • 1
    Email author
  • A. R. Nadimi
    • 1
  1. 1.Department of GeologyUniversity of IsfahanIsfahanIran

Personalised recommendations