Skip to main content
Log in

Deformation Mechanisms of Darreh Sary Metapelites, Sanandaj‒Sirjan Zone, Iran

  • Published:
Geotectonics Aims and scope

Abstract

The Darreh Sary metapelitic rocks are located in the northeast of Zagros orogenic belt and Sanandaj-Sirjan structural zone. The lithological composition of these rocks includes slate, phyllite, muscovitebiotite schist, garnet schist, staurolite-garnet schist and staurolite schist. The shale is the protolith of these metamorphic rocks, which was originated from the continental island arc tectonic setting and has been subjected to processes of Zagros orogeny. The deformation mechanisms in these rocks include bulging recrystallization (BLG), subgrain rotation recrystallization (SGR) and grain boundary migration recrystallization (GBM), which are considered as the key to estimate the deformation temperature of the rocks. The estimated ranges of deformation temperature and depth in these rocks show the temperatures of 275–375, 375–500, and >500°C and the depths of 10 to 17 km. The observed structures in these rocks such as faults, fractures and folds, often with the NW-SE direction coordinate with the structural trends of Zagros orogenic belt structures. The S-C mylonite fabrics is observed in these rocks with other microstructures such as mica fish, σ fabric and garnet deformation indicate the dextral shear deformation movements of study area. Based on the obtained results of this research, the stages of tectonic evolution of Darreh Sary area were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1: 100000 Golpayegan Geology Map (Geol. Surv. Iran, Tehran, 1992) [in Persian].

  2. P. Agard, J. Omrani, L. Jolivet, and F. Mouthereau, “Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation,” Int. J. Earth Sci. 94, 401–419 (2005).

    Article  Google Scholar 

  3. P. Agard, J. Omrani, L. Jolivet, H. Whitechurch, B. Vrielynck, W. Spakman, P. Monié, B. Meyer, and R. Wortel, “Zagros orogeny: A subduction-dominated process,” Geol. Mag. 148, 1–34 (2011).

    Article  Google Scholar 

  4. A. Aghanabati, Geology of Iran (Geol. Surv. Iran, Tehran, 2004) [in Persian].

    Google Scholar 

  5. M. Alavi and M. A. Mahdavi, “Stratigraphy and structures of the Nahavand region in western Iran and their implications for the Zagros tectonics,” Geol. Mag. 131, 43–47 (1994).

    Article  Google Scholar 

  6. M. Allen, J. Jackson, and R. Walker, “Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates,” Tectonics 23 (2004). doi 10.1029/2003TC001530

    Google Scholar 

  7. U. Altenberger and S. Wilhelm, “Ductile deformation of K-feldspar in dry eclogite facies shear zones in the Bergen Arcs, Norway,” Tectonophysics 320, 107–121 (2000).

    Article  Google Scholar 

  8. D. M. Bachmanov, V. G. Trifonov, K. T. Hessami, A. I. Kozhurin, T. P. Ivanova, E. A. Rogozhin, M. C. Hademi, and F. H. Jamali, “Active faults in the Zagros and central Iran,” Tectonophysics 380, 221–241 (2004).

    Article  Google Scholar 

  9. J. E. Baily and P. B. Hirsch, “The recrystallization process in some polycrystalline metals,” Proc. R. Soc. London A 267, 11–30 (1962). doi 10.1098/rspa.1962.0080

    Article  Google Scholar 

  10. P. Ballato, A. Mulch, A. Landgraf, M. R. Strecker, M. C. Dalconi, A. Friedrich, and S. H. Tabatabaei, “Middle to late Miocene Middle Eastern climate from stable oxygen and carbon isotope data, southern Alborz mountains, N Iran,” Earth Planet. Sci. Lett. 300, 125–38 (2010).

    Article  Google Scholar 

  11. M. R. Bathia and K. A. W. Crook, “Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins,” Contrib. Mineral. Petrol. 92, 181–193 (1986).

    Article  Google Scholar 

  12. F. Berberian and M. Berberian, “Tectono-plutonic episodes in Iran,” in Zagros Hindu Kush, Himalaya: Geodynamic Evolution, Vol. 3 of Am. Geophys. Union, Geodyn. Ser., Ed. by H. K. Gupta and F. M. Delany (Am. Geophys. Union, Washington, DC, 1981), pp. 5–32.

    Chapter  Google Scholar 

  13. M. Berberian, “The southern Caspian, a compressional depression floored by a trapped, modified oceanic crust,” Can. J. Earth Sci. 20, 163–183 (1983).

    Article  Google Scholar 

  14. M. Berberian and G. C. P. King, “Towards a paleogeography and tectonic evolution of Iran,” Can. J. Earth Sci. 18, 1764–1796 (1981).

    Article  Google Scholar 

  15. D. Berthe, P. Choukroune, and P. Jegouzo, “Orthogeneiss mylonite and non-coaxial deformation of granites: The example of the South American shear zone,” J. Struct. Geol. 1, 31–42 (1979).

    Article  Google Scholar 

  16. M. G. Best, Igneous and Metamorphic Petrology (Blackwell, 2003).

    Google Scholar 

  17. S. Beygi, A. Nadimi, and H. Safaei, “Tectonic history of seismogenic fault structures in Central Iran,” J. Geosci. 61, 127–144 (2016).

    Article  Google Scholar 

  18. K. Bucher and M. Frey, Petrogenesis of Metamorphic Rocks (Springer, New York, 2002).

    Book  Google Scholar 

  19. M. R. Drury, F. J. Humphreys, and S. H. White, “Large strain deformation studies using polycrystalline magnesium as a rock analogue. Part II: Dynamic recrystallization mechanisms at high temperatures,” Phys. Earth Planet. Inter. 40, 208–222 (1985).

    Article  Google Scholar 

  20. Z. Ebrahimiyan, G.Torabi, J. Ahmadian, and H. Baharzadeh, “Petrology of Mesr granitoid complex (NE of Isfahan Province),” Iran. J. Petrol. 2 (6), 1–16 (2011).

    Google Scholar 

  21. J. Eftekharnejad, “Separation the various zones of Iran with structural condition, associated with sedimentary basins,” Bull. Iran. Pet. Inst. 82, 19–28 (1980).

    Google Scholar 

  22. N. L. Falcon, “Southern Iran: Zagros Mountains,” in Mesozoic-Cenozoic Orogenic Belts: Data for Orogenic Studies, Vol. 4 of Geol. Soc. London, Spec. Publ., Ed. by A. M. Spencer (London, 1974), pp. 199–211.

    Google Scholar 

  23. D. A. Ferrill, “Calcite twin widths and intensities as metamorphic indicators in natural low-temperature deformation of limestone,” J. Struct. Geol. 13, 667–675 (1991).

    Article  Google Scholar 

  24. D. A. Ferrill, A. P. Morris, M. A. Evans, and M. Burkhard, “Calcite twin morphology: A low-temperature deformation geothermometer,” J. Struct. Geol. 11, 421–431 (2004).

    Article  Google Scholar 

  25. H. Fossen, Structural Geology (Cambridge Univ. Press, Cambridge, 2010).

    Book  Google Scholar 

  26. D. Garcia, M. Fonteilles, and J. Moutte, “Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites,” J. Geol. 102, 411–422 (1994).

    Article  Google Scholar 

  27. R. M. Garrels and F. T. Mackenzie, Evolution of Sedimentary Rocks (Norton, New York, 1971)

    Google Scholar 

  28. Geological Map of Iran (N.I.O.C. Explor. Prod., Tehran, 1975–1976).

  29. A. Ghasemi and C. J. Talbot, “A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran),” J. Asian Earth Sci. 26, 683–693 (2005).

    Article  Google Scholar 

  30. J. Golonka, “Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic,” Tectonophysics 381, 235–273 (2004).

    Article  Google Scholar 

  31. M. Guillopé and J. P. Poirier, “Dynamic recrystallization during creep of single-crystalline halite: An experimental study,” J. Geophys. Res., B 84, 5557–5567 (1979).

    Article  Google Scholar 

  32. S. J. Haynes and H. McQuillan, “Evolution of the Zagros Suture Zone, Southern Iran,” Geol. Soc. Am. Bull. 85, 739–44 (1974).

    Article  Google Scholar 

  33. G. Hirth and J. Tullis, “Dislocation creep regimes in quartz aggregates,” J. Struct. Geol. 14, 145–159 (1992).

    Article  Google Scholar 

  34. FaultKin 7 software, Cornell University. http://www. geo.cornell.edu/geology/faculty/RWA/programs/faultkin. html. Accessed December 31, 2017.

  35. Stereonet 7 software, Cornell University. http://www. geo.cornell.edu/geology/faculty/RWA/programs/stereonet-7-for-windows.html. Accessed December 31, 2017.

  36. P. Jerabek, H. Stunitz, R. Heilbronner, O. Lexa, and K. Schulmann, “Microstructural-deformation record of an orogen-parallel extension in the Vepor Unit, West Carpathians,” J. Struct. Geol. 29, 1722–1743 (2007).

    Article  Google Scholar 

  37. S. Karimi, PhD Thesis (Univ. Isfahan, Isfahan, 2012) [in Persian].

    Google Scholar 

  38. S. Karimi, S. M. Tabatabaei Manesh, H. Safaei, and M. Sharifi, “Metamorphism and deformation of Golpayegan metapelitic rocks, Sanandaj–Sirjan Zone, Iran,” Petrology 20, 658–675 (2012).

    Article  Google Scholar 

  39. G. E. Lloyd and B. Freeman, “Dynamic recrystallization of quartz under greenschist condition,” J. Struct. Geol. 16, 6, 867–881 (1994).

    Article  Google Scholar 

  40. G. S. Lister and A. W. Snoke, “S–C mylonites,” J. Struct. Geol. 6, 617–638 (1984).

    Article  Google Scholar 

  41. N. S. Mancktelow and G. Pennacchioni, “The control of precursor brittle fracture and fluid-rock interaction on the development of single and paired ductile shear zones,” J. Struct. Geol. 27, 645–661 (2005).

    Article  Google Scholar 

  42. M. Mohajjel and C. L. Fergusson, “Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan Zone, western Iran,” J. Struct. Geol. 22, 1125–1139 (2000).

    Article  Google Scholar 

  43. M. Mohajjel, C. L. Fergusson, and M. R. Sahandi, “Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran,” J. Asian Earth Sci. 21, 397–412 (2003).

    Article  Google Scholar 

  44. E. Moosavi and M. Mohajjel, “Structure of shear zone and folds interference patterns in North Esfajerd, Sanandaj–Sirjan Zone,” J. Geosci. 91, 119–130 (2012).

    Google Scholar 

  45. C. K. Morley, B. Kongwung, A. A. Julapour, M. Abdolghafourian, M. Hajian, D. Waples, J. Warren, H. Otterdoom, K. Srisuriyon, and H. Kazemi, “Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in the Qom-Saveh area,” Geosphere 5, 325–362 (2009).

    Article  Google Scholar 

  46. A. Nadimi, PhD Thesis (Univ. Warsaw, Warsaw, 2010).

    Google Scholar 

  47. A. Nadimi, “Structural analysis of the Hasan-Robat marbles as traces of folded basement in the Sanandaj–Sirjan Zone, Iran,” Geotectonics 46, 6, 560–578 (2015).

    Article  Google Scholar 

  48. A. Nadimi and A. Konon, “Gaw-Khuni Basin: An active stepover structure in the Sanandaj–Sirjan Zone, Iran,” Geol. Soc. Am. Bull. 124, 484–498 (2012).

    Article  Google Scholar 

  49. A. Nadimi and H. Nadimi, “Active tectonics of the South Shahreza, N. Zagros Mountains, Iran,” 6th International Conference on the Geology of the Middle East: United Arab Emirates University Publication, Abstracts (2006), p. 272.

    Google Scholar 

  50. A. Nadimi and H. Nadimi, “Exhumation of old rocks during the Zagros collision in the northwestern part of the Zagros Mountains, Iran,” in Investigations into the Tectonics of the Tibetan Plateau, Vol. 444 of Geol. Soc. Am. Spec. Pap., Ed. by B. C. Burchfiel and E. Wang. (2008), pp. 105–122.

    Google Scholar 

  51. G. Nichols, Sedimentology and Stratigraphy, 2nd ed. (Wiley–Blackwell, Chichester, 2009).

    Google Scholar 

  52. O. Nishikawa and T. Takeshita, “Progressive lattice misorientation and microstructural development in quartz veins deformed under subgreenschist conditions,” J. Struct. Geol. 22, 259–276 (2000).

    Article  Google Scholar 

  53. O. Nishikawa, K. Saiki, and H. R. Wenk, “Intra-granular strains and grain boundary morphologies of dynamically recrystallized quartz aggregates in a mylonite,” J. Struct. Geol. 26, 127–141 (2004).

    Article  Google Scholar 

  54. M. W. Nyman, R. D. Law, and E. Smelik, “Cataclastic deformation mechanism for the development of coremantle structures in amphibole,” Geology 20, 455–458 (1992).

    Article  Google Scholar 

  55. T. Okudaira, T. Takeshita, M. Toriumi, and J. H. Kruhl, “Prism- and basal-plane parallel subgrain boundaries in quartz: A microstructural geothermobarometer,” J. Metamorph. Geol. 16, 141–146 (1998).

    Article  Google Scholar 

  56. C. W. Passchier and R. A. J. Trouw, Microtectonics, 2nd ed. (Springer, Berlin, 2005).

    Google Scholar 

  57. H. Philip, A. Cisternas, A. Gvishiani, and A. Gorshkov, “The Caucasus: An actual example of the initial stages of a continental collision,” Tectonophysics 161, 1–21 (1989).

    Article  Google Scholar 

  58. J. G. Ramsay, “Shear zone geometry: A review,” J. Struct. Geol. 2, 83–101 (1980).

    Article  Google Scholar 

  59. J. G. Ramsay and M. I. Huber, The Techniques of Modern Structural Geology, Vol. 1: Strain Analysis (Academic Press, London, 1983).

    Google Scholar 

  60. L. E. Ricou, “The growing ophiolite perioral, a belt plies establishment in Upper Cretaceous,” Rev. Geogr. Phys. Geol. Dyn. 13, 327–50 (1971).

    Google Scholar 

  61. A. H. Robertson, “Mesozoic–Tertiary tectonic-sedimentary evolution of a south Tethyan oceanic basin and its margins in southern Turkey,” in Tectonics and Magmatism in Turkey and the Surrounding Area, Vol. 173 of Geol. Soc. London, Spec. Publ., Ed. by E. Bozkurt, J. A. Winchester, and J. D. A. Piper (2000), pp. 97–138.

    Google Scholar 

  62. J. Sapkota and I. V. Sanislav, “Preservation of deep Himalayan PT conditions that formed during multiple events in garnet cores: Mylonitization produces erroneous results for rims,” Tectonophysics 587, 89–106 (2013).

    Article  Google Scholar 

  63. K. Sarkarinejad and A. Alizadeh, “Dynamic model for the exhumation of the Tutak gneiss dome within a bivergent wedge in the Zagros Thrust System of Iran,” J. Geodyn. 47, 201–209 (2009).

    Article  Google Scholar 

  64. N. Shigematsu, “Dynamic recrystallization in deformed plagioclase during progressive shear deformation,” Tectonophysics 305, 437–452 (1999).

    Article  Google Scholar 

  65. M. Stipp, H. Stunitz, R. Heilbronner, and S. M. Schmid, “The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C,” J. Struct. Geol. 24, 1861–1884 (2002).

    Article  Google Scholar 

  66. J. Stöcklin, “Structural history and tectonics of Iran: A review,” AAPG Bull. 52, 1229–1258 (1968).

    Google Scholar 

  67. S. M. Tabatabaei Manesh, Petrography and Petrology of the Metamorphic Rocks (Publ. Jahad Daneshgahi Isfahan branch, Isfahan, 2012) [in Persian].

    Google Scholar 

  68. O. Thiele, M. Alavi, R. Assefi, A. Hushmand-Zadeh, K. Seyed-Emami, and M. Zahedi, Golpaygan Quadrangle Map (1: 250000) with Explanatory Text (Geol. Surv. Iran, Tehran, 1968).

    Google Scholar 

  69. G. Torabi, “Chromitite potential in mantle peridotites of the Jandaq ophiolite (Isfahan province, Central Iran),” C. R. Geosci. 341, 982–992 (2009).

    Article  Google Scholar 

  70. G. Torabi, S. Arai, and J. Koepke, “Metamorphosed mantle peridotites from Central Iran (Jandaq area, Isfahan province),” Neues Jahrb. Geol. Palaeontol., Abh. 261, 129–150 (2011).

    Article  Google Scholar 

  71. C. Trepmann, A. Lenze, and B. Stockhert, “Static recrystallization of vein quartz pebbles in a high-pressure–low-temperature metamorphic conglomerate,” J. Struct. Geol. 32, 202–215 (2010).

    Article  Google Scholar 

  72. V. G. Trifonov, “Collision and mountain building,” Geotectonics 50, 1–20 (2016).

    Article  Google Scholar 

  73. J. Urai, W. D. Means, and G. S. Lister, “Dynamic recrystallization of minerals,” in Mineral and Rock Deformation: Laboratory Studies, Vol. 36 of Am. Geophys. Union, Geophys. Monogr. Ser., Ed. by H. C. Heard and B. E. Hobbs, (1986), pp. 161–199.

    Chapter  Google Scholar 

  74. R. H. Vernon, A Practical Guide to Rock Microstructure (Cambridge Univ. Press, Cambridge, 2006).

    Google Scholar 

  75. S. J. Vincent, M. B. Allen, A. D. Ismail Zadeh, R. Flecker, K. A. Foland, and M. D. Simmons, “Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region,” Geol. Soc. Am. Bull. 117, 1513–33 (2005).

    Article  Google Scholar 

  76. H. G. F. Winkler, Petrogenesis of Metamorphic Rocks, 4th ed. (Springer, New York, 1976).

    Book  Google Scholar 

  77. J. C. White and S. H. White, “Semi-brittle deformation within the Alpine fault zone, New Zealand,” J. Struct. Geol. 5, 579–589 (1983).

    Article  Google Scholar 

  78. D. L. Whitney and B. W. Evans, “Abbreviations for names of rock-forming minerals,” Am. Mineral. 95, 185–187 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Tabatabaei Manesh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmati, O., Tabatabaei Manesh, S.M. & Nadimi, A.R. Deformation Mechanisms of Darreh Sary Metapelites, Sanandaj‒Sirjan Zone, Iran. Geotecton. 52, 281–296 (2018). https://doi.org/10.1134/S0016852118020024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852118020024

Keywords

Navigation