Numerical Simulation of Sub-Terahertz Thermal Emission: RADYN Code


The temporal evolution of thermal bremsstrahlung in the sub-terahertz range is calculated for F-CHROMA models of the flare chromosphere and transition region ( These models are calculated based on the numerical solution of the system of equations of radiation hydrodynamics with the RADYN code, which describes the response of chromospheric plasma to the flux of accelerated electrons in the form of a triangular pulse. It is found that the positive slope of the spectrum in the frequency range of 93–400 GHz is formed during the entire burst. The sub-THz radiation peak can be both ahead and behind the maximum of the function of the injection of energetic electrons depending on the number and index of the spectrum of precipitating particles. In some cases, the time profile of the sub-THz radiation is quite complex and pulsating due to gas-dynamic phenomena in the chromosphere and transition region.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.


  1. 1

    Allred, J.C., Hawley, S.L., Abbett, W.P., and Carlsson, M., Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares, Astrophys. J., 2005, vol. 630, pp. 573–586.

    Article  Google Scholar 

  2. 2

    Allred, J.C., Kowalski, A.F., and Carlsson, M., A unified computational model for solar and stellar flares, Astrophys. J., 2015, vol. 809, id 104.

  3. 3

    Carlsson, M. and Stein, R.F., Non-LTE radiating acoustic shocks and CA II K2V bright points, Astrophys. J., 1992, vol. 397, pp. L59–L62.

    Article  Google Scholar 

  4. 4

    Carlsson, M. and Stein, R.F., Formation of solar calcium H and K bright grains, Astrophys. J., 1997, vol. 481, pp. 500–514.

    Article  Google Scholar 

  5. 5

    Dulk, G.A., Radio emission from the Sun and stars, Annu. Rev. Astron. Astrophys., 1985, vol. 23, pp. 169–224.

    Article  Google Scholar 

  6. 6

    Kašparová, J., Heinzel, P., Karlický, M., et al., Far-IR and radio thermal continua in solar flares, Cent. Eur. Astrophys. Bull., 2009, vol. 33, pp. 309–317.

    Google Scholar 

  7. 7

    Kašparová, J., Carlsson, M., Heinzel, P., and Varady, M., Modelling of flare processes: A comparison of the two RHD codes FLARIX and RADYN, ASP Conf. Ser., 2019, vol. 519, pp. 141–146.

    Google Scholar 

  8. 8

    Kontar, E.P., Motorina, G.G., Jeffrey, N.L.S., et al., Frequency rising sub-THz emission from solar flare ribbons, Astron. Astrophys., 2018, vol. 620, id A95.

  9. 9

    Kostiuk, N.D. and Pikelner, S.B., Gasdynamics of a flare region heated by a stream of high-velocity electrons, Sov. Astron., 1975, vol. 18, pp. 590–599.

    Google Scholar 

  10. 10

    Krucker, S., Giménez de Castro, C.G., Hudson, H.S., et al., Solar flares at submillimeter wavelengths, Astron. Astrophys. Rev., 2013, vol. 21, no. 1, id 58.

  11. 11

    Livshits, M.A., Badalyan, O.G., Kosovichev, A.G., et al., The optical continuum of solar and stellar flares, Sol. Phys., 1981, vol. 73, no. 2, pp. 269–288.

    Article  Google Scholar 

  12. 12

    Machado, M.E., Avrett, E.H., Vernazza, J.E., and Noyes, R.W., Semiempirical models of chromospheric flare regions, Astrophys. J., 1980, vol. 242, no. 15, pp. 336–351.

    Article  Google Scholar 

  13. 13

    Morgachev, A.S., Tsap, Yu.T., Smirnova, V.V., and Motorina, G.G., Simulation of subterahertz emission from the April 2, 2017 solar flare based on the multiwavelength observations, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 8, pp. 1113–1122.

  14. 14

    Morgachev, A.S., Tsap, Yu.T., Smirnova, V.V., and Motorina, G.G., On the source of subterahertz radiation of the solar flare on April 2, 2017, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 8, pp. 1114–1120.

  15. 15

    Ruan, W., Xia, C., and Keppens, R., Extreme-ultraviolet and X-ray emission of turbulent solar flare loops, Astrophys. J., 2019, vol. 877, id L11.

  16. 16

    Silva, J.F.V., Giménez de Castro, C.G., Simões, P.J.A., and Raulin, J.-P., Submillimeter radiation as the thermal component of the Neupert effect, Sol. Phys., 2019, vol. 294, no. 11, id 150.

  17. 17

    Tsap, Yu.T., Smirnova, V.V., Morgachev, A.S., et al., On the origin of 140 GHz emission from the 4 July 2012 solar flare, Adv. Space Res., 2016, vol. 57, no. 7, pp. 1449–1455.

    Article  Google Scholar 

  18. 18

    Varady, M., Kasparova, J., Moravec, Z., et al., Modeling of solar flare plasma and its radiation, IEEE Trans. Plasma Sci., 2010, vol. 38, no. 9, pp. 2249–2253.

    Article  Google Scholar 

  19. 19

    Vernazza, J.E., Avrett, E., and Loeser, R., Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet Sun, Astrophys. J. Suppl. Ser., 1981, vol. 45, pp. 635–725.

    Article  Google Scholar 

Download references


This study was supported in part by the Russian Foundation for Basic Research, project no. 18-02-00856-a; Ministry of Science and Higher Education of the Russian Federation, project no. 0831-2019-0006; Ministry of Science and Higher Education of the Russian Federation, project no. RFMEFI62020X0003 and project nos. RVO:67985815 and LM2015067: EU-ARC.CZ.

Author information



Corresponding author

Correspondence to A. S. Morgachev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morgachev, A.S., Tsap, Y.T., Smirnova, V.V. et al. Numerical Simulation of Sub-Terahertz Thermal Emission: RADYN Code. Geomagn. Aeron. 60, 1038–1049 (2020).

Download citation