Specific Features of Radiation Transfer in the Hydrogen Lyman-alpha Line and Their Possible Relationship with Changes in the Electron Concentration in the Ionospheric D Region


The effect of neutral atmospheric parameters on the radiation transfer in the Lyman-alpha line and the electron concentration in the ionospheric D region is studied for various seasons and nitric oxide (NО) concentrations. The radiation transfer was calculated with a modified radiation transfer model that allows multiscattering radiation effects. The atomic hydrogen and molecular oxygen profiles affecting Lyman-alpha radiation propagation were given with the MSIS-00 model. It is shown the radiation fluxes in the Lyman-alpha line and the electron concentration in the D region can be markedly affected upon sudden stratospheric warming and by the influence of planetary waves on the mesosphere. The changes in radiation fluxes in the Lyman-alpha line under unstable atmospheric conditions in the winter and the possible NО variations qualitatively explain the phenomenon of the winter anomaly.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. 1

    Barabash, V., Osepian, A., Dalin, P., and Kirkwood, S., Electron density profiles in the quiet lower ionosphere based on the results of modeling and experimental data, Ann. Geophys., 2012, vol. 30, no. 9, pp. 1345–1360.

    Article  Google Scholar 

  2. 2

    Belikov, Yu.E. and Gurvich, A.V., Images of optical thick artificial aerosol clouds in the near-Earth space, Adv. Space Res., 1995, vol. 15, no. 12, pp. 12103–12106.

    Article  Google Scholar 

  3. 3

    Belikov, Yu.E., Nikolaishvili, Sh.S., and Peradze, R.K., Model of sunlight scattering in an artificial spherical gas-dispersion cloud in the Earth’s upper atmosphere, Kosm. Issled., 1993, vol. 31, no. 1, pp. 135–142.

    Google Scholar 

  4. 4

    Belikov, Yu., Romanovsky, Yu., Nikolaishvili, Sh., and Peradze, R., Numerical model of scattering radiation in the Earth atmosphere for scientific investigations and applications, Phys. Chem. Earth B, 2000, vol. 25, nos. 5–6, pp. 427–430.

    Article  Google Scholar 

  5. 5

    Belikov, Yu.E., Dyshlevskii, S.V., and Nikolaishvili, Sh.S., Mathematical model of solar radiation transfer in the Earth’s atmosphere. Part 1, Geliogeofiz. Issled., 2018a, no. 17, pp. 77–86.

  6. 6

    Belikov, Yu.E., Dyshlevskii, S.V., and Nikolaishvili, Sh.S., Mathematical model of solar radiation transfer in the Earth’s atmosphere. Part 2, Geliogeofiz. Issled., 2018b, no. 18, pp. 18–31.

  7. 7

    Belikov, Yu.E., Dyshlevskii, S.V., and Nikolaishvili, Sh.S., Mathematical model of solar radiation transfer in the Earth’s atmosphere. Part 3, Geliogeofiz. Issled., 2018c, no. 18, pp. 32–39.

  8. 8

    Biondi, M.A., Atmospheric electron-ion and ion-ion recombination processes, Can. J. Chem., 1969, vol. 47, pp. 1711–1719.

    Article  Google Scholar 

  9. 9

    Callis, L.B., Natarajan, M., and Lambeth, J.D., Observed and calculated mesospheric NO, 1992–1997, Geophys. Res. Lett., 2002, vol. 29, no. 2, pp. 17-1–17-4. https://doi.org/10.1029/2001GL013995

  10. 10

    Danilov, A.D., Photochemistry of the D-region, Ionos.Issled., № 34. C. 6-35. 1981.

    Google Scholar 

  11. 11

    Danilov, A.D., Meteorological control of the D-region, Ionos.Issled., № 39. C. 33-42. 1986.

    Google Scholar 

  12. 12

    Danilov, A.D., Populyarnaya aeronomiya (Popular Aeronomy), Leningrad: Gidrometeoizdat, 1989.

  13. 13

    Danilov, A.D. and Smirnova, N.V., Ion composition and photochemistry of the lower thermosphere. 2. Ion composition of D- and E-regions, Geomagn. Aeron., 1993, vol. 33, no. 1, pp. 120–133.

    Google Scholar 

  14. 14

    Dyshlevskii, S.V. and Belikov, Yu.E., Radiation flux variations in Layman alpha hydrogen line in the ionospheric D-region, Geliogeofiz. Issled., 2018, no. 17, pp. 64–76.

  15. 15

    Garcia, R.R., Solomon, S., Avery, S.K., and Reid, G.C., Transport of nitric oxide and D region winter anomaly, J. Geophys. Res., 1987, vol. 92, no. D1, pp. 977–994.

    Article  Google Scholar 

  16. 16

    Ivanov-Kholodnyi, G.S. and Nikol’skii, G.M., Solntse i ionosfera (korotkovolnovoe izluchenie Solntsa i ego vozdeistvie na ionosferu) (The Sun and the Ionosphere (Shortwave Solar Radiation and Its Impact on the Ionosphere)), Moscow: Nauka, 1969.

  17. 17

    Lacoursière, J., Meyer, S.A., Faris, G.W., Slanger, T.G., Lewis, B.R., and Gibson, S.T., The O(1D) yield from O2 photodissociation near H Lyman-α (121.6 nm), J. Chem. Phys., 1999, vol. 110, no. 4, pp. 1949–1958.

    Article  Google Scholar 

  18. 18

    Laštovička, J., On some sources of uncertainty in the Lyman-α ionization rate calculations, Stud. Geophys. Geod., 1976, vol. 20, pp. 273–283.

    Article  Google Scholar 

  19. 19

    Lazarev, A.I., Kovalenok, V.V., and Avakyan, S.V., Issledovanie Zemli s pilotiruemykh kosmicheskikh korablei (Investigation of the Earth from Manned Space Vehicles), Leningrad: Gidrometeoizdat, 1987.

  20. 20

    Lewis, B.R., Vardavas, I.M., and Carver, J.H., The aeronomic dissociation of water vapor by solar H Lyman-α radiation, J. Geophys. Res., 1983, vol. 88, pp. 4935–4940.

    Article  Google Scholar 

  21. 21

    Medvedev, V.V. and Nikitin, M.B., Analytical approximation of [NO] altitude distribution in the mesosphere, Geomagn. Aeron. (Engl. Transl.), 1999, vol. 39, no. 5, pp. 654–657.

  22. 22

    Medvedev, V.V., Ishanov, S.A., and Zenkin, V.I., Self-consistent model of the lower ionosphere, Geomagn. Aeron. (Engl. Transl.), 2002a, vol. 42, no. 6, pp. 745–754.

  23. 23

    Medvedev, V.V., Latyshev, K.S., and Nikitin, M.B., Analytical approximation of the nitric oxide vertical distribution in the Earth’s mesosphere, Geomagn. Aeron. (Engl. Transl.), 2002b, vol. 42, no. 5, pp. 614–616.

  24. 24

    Medvedeva, I.V., Beletskii, A.B., Perminov, V.I., Semenov, A.I., Chernigovskaya, M.A., and Shefov, N.I., Variations in atmospheric temperature at the mesopause and lower thermosphere heights during periods of stratospheric warming according to the data of ground-based and satellite measurements at different longitudinal sectors, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2011, vol. 8, no. 4, pp. 127–135.

    Google Scholar 

  25. 25

    Meira, L.G., Rocket measurements of upper atmospheric nitric oxide and their consequences to the lower ionosphere, J. Geophys. Res., 1971, vol. 76, pp. 202–212.

    Article  Google Scholar 

  26. 26

    Pavlov, A.V., Photochemistry of Ions at D-region Altitudes of the Ionosphere: A Review, Dordrecht: Springer, 2013.

    Google Scholar 

  27. 27

    Petrignani, A., Andersson, P.U., Pettersson, J.B.C., Tho-mas, R.D., Hellberg, F., Ehlerding, A., Larsson, M., and van der Zande, W.J., Dissociative recombination of the weakly bound NO-dimer cation: Cross sections and three-body dynamics, J. Chem. Phys., 2005, vol. 123, no. 19, pp. 194 306–194 311. https://doi.org/10.1063/1.2116927

    Article  Google Scholar 

  28. 28

    Picone, J.M., Hedin, A.E., Drob, D.P., and Aikin, A.C., NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 2002, vol. 107, no. A12, 1468. https://doi.org/10.1029/2002JA009430

    Article  Google Scholar 

  29. 29

    Reddmann, T. and Uhl, R., The H Lyman-α actinic flux in the middle atmosphere, Atmos. Chem. Phys., 2003, vol. 3, pp. 225–231.

    Article  Google Scholar 

  30. 30

    Sassi, F., Garcia, R.R., Boville, D.F., and Liu, H., On temperature inversions and the mesospheric surf zone, J. Geophys. Res., 2002, vol. 107, no. D19, 4380. https://doi.org/10.1029/2001JD001525

    Article  Google Scholar 

  31. 31

    Siskind, D.E., Barth, C.A., and Russel, J.M., A climatology of nitric oxide in the mesosphere and thermosphere, Adv. Space Res., 1998, vol. 21, pp. 1353–1362.

    Article  Google Scholar 

  32. 32

    Smirnova, N.V. and Danilov, A.D., Rocket data on the D-region positive ion composition, J. Atmos. Terr. Phys., 1994, vol. 56, no. 8, pp. 887–892.

    Article  Google Scholar 

  33. 33

    Smirnova, N.V., Ogloblina, O.F., and Vlaskov, V.F., Modeling of the lower ionosphere, Pure Appl. Geophys., 1988, vol. 127, nos. 2–3, pp. 353–379.

    Article  Google Scholar 

  34. 34

    Solomon, S., Reid, G.C., and Roble, R.G., Photochemical coupling between the thermosphere and the lower atmosphere. 1. Odd nitrogen from 50 to 120 km, J. Geophys. Res., 1982a, vol. 87, pp. 7206–7220.

    Article  Google Scholar 

  35. 35

    Solomon, S., Reid, G.C., Roble, R.G., and Crutzen, P.J., Photochemical coupling between the thermosphere and the lower atmosphere. 2. D region ion chemistry and the winter anomaly, J. Geophys. Res., 1982b, vol. 87, pp. 7221–7227.

    Article  Google Scholar 

  36. 36

    Strobel, D.F., Diurnal variation of nitric oxide in the upper atmosphere, J. Geophys. Res., 1971, vol. 76, no. 10, pp. 2441–2452.

    Article  Google Scholar 

  37. 37

    Tuchkov, G.A. and Zadorozhnyi, A.M., Direct measurements of nitric oxide in the middle atmosphere, Kosm. Issled., 1988, vol. 26, no. 3, pp. 474–477.

    Google Scholar 

  38. 38

    Walker, G., Astronomical Observations, Cambridge: Cambridge Univ. Press, 1987; Moscow: Mir, 1990.

  39. 39

    Weller, C.S. and Biondi, M.A., Recombination, attachment, and ambipolar diffusion of electrons in photoionized NO afterglow, Phys. Rev., 1968, vol. 172, pp. 198–206.

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to S. V. Dyshlevsky or Yu. E. Belikov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dyshlevsky, S.V., Belikov, Y.E. Specific Features of Radiation Transfer in the Hydrogen Lyman-alpha Line and Their Possible Relationship with Changes in the Electron Concentration in the Ionospheric D Region. Geomagn. Aeron. 60, 325–334 (2020). https://doi.org/10.1134/S0016793220030056

Download citation


  • mathematical modeling
  • radiation transfer
  • Lyman-alpha line
  • ionospheric D region
  • winter anomaly