Supersubstorms during Storms of September 7–8, 2017


The development of two supersubstorms (i.e., very intense substorms with an amplitude of more than 2000 nT) recorded in the main phase of two consecutive strong magnetic storms with maxima at ~0100 UT (Dst ~ –150 nT) and ~1300 UT (Dst ~ –115 nT) on September 8, 2017, is analyzed. Data from the SuperMAG global magnetometers network and the Scandinavian profile of IMAGE stations are used. Analysis of spatial distribution maps of ionospheric equivalent electric currents on the Scandinavian meridian derived according to the MIRACLE model and global maps of magnetic field vectors obtained from SuperMAG observations makes it possible to obtain the spatial distribution of planetary-scale disturbances. Both supersubstorms were characterized not only by strong nighttime disturbances at auroral latitudes (~–3600 nT and ~–2600 nT) but also by the simultaneous development of daytime magnetic bays at polar latitudes with amplitudes of ~–1000 nT and ~–400 nT, respectively. We assume that the daytime polar disturbances observed simultaneously with the supersubstorms can result from the pull of the westward ionospheric current to the dayside. Our observations support the assumption that the westward electrojet during the supersubstorm develops on a global scale from the evening to the dayside.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    Adhikari, B., Baruwal, P., and Chapagain, N.P., Analysis of supersubstorm events with reference to polar cap potential and polar cap index, Earth Space Sci., 2017, vol. 4, pp. 2–15.

  2. 2

    Akasofu, S.-I., The development of the auroral substorm, Planet. Space Sci., 1964, vol. 12, no. 4, pp. 273–282.

    Article  Google Scholar 

  3. 3

    Anderson, B.J., Korth, H., Waters, C.L., Green, D.L., Merkin, V.G., Barnes, R.J., and Dryud, L.P., Development of large-scale Birkeland currents determined from the active magnetosphere and planetary electrodynamics response experiment, Geophys. Res. Lett., 2014, vol. 41, pp. 3017–3025.

    Article  Google Scholar 

  4. 4

    Blagoveshchensky, D.V. and Sergeeva, M.A., Impact of geomagnetic storm of September 7–8, 2017 on ionosphere and HF propagation: A multi-instrument study, Adv. Space Res., 2019, vol. 63, pp. 239–256.

    Article  Google Scholar 

  5. 5

    Chashei, I.V., Tyul’bashev, S.A., Shishov, V.I., and Subaev, I.A., Coronal mass ejections in September 2017 from monitoring of interplanetary scintillations with the large phased array of the Lebedev Institute of Physics, Astron. Rep., 2018, vol. 62, no. 5, pp. 346–351.

    Article  Google Scholar 

  6. 6

    Clausen, L.B.N., Milan, S.E., Baker, J.B.H., Ruohoniemi, J.M., Glassmeier, K.-H., Coxon, J.C., and Anderson, B.J., On the influence of open magnetic flux on substorm intensity: Ground- and space-based observations, J. Geophys. Res.: Space, 2013, vol. 118, no. 6, pp. 2958–2969.

    Article  Google Scholar 

  7. 7

    Davis, T.N. and Sugiura, M., Auroral electrojet activity index AE and its universal time variations, J. Geophys. Res., 1966, vol. 71, no. 3, pp. 785–801.

    Article  Google Scholar 

  8. 8

    Despirak, I.V., Lyubchich, A.A., Biernat, Kh.K., and Yahnin, A.G., Poleward expansion of the westward electrojet depending on the solar wind and IMF parameters, Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 3, pp. 284–292.

  9. 9

    Despirak, I.V., Lubchich, A.A., Yahnin, A.G., Kozelov, B.V., and Biernat, H.K., Development of substorm bulges during different solar wind structures, Ann. Geophys., 2009, vol. 27, no. 5, pp. 1951–1960.

    Article  Google Scholar 

  10. 10

    Despirak, I.V., Lyubchich, A.A., and Kleimenova, N.G., Polar and high latitude substorms and solar wind conditions, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 5, pp. 575–582.

  11. 11

    Despirak, I.V., Lubchich, A.A., and Kleimenova, N.G., High-latitude substorm dependence on space weather conditions in solar cycle 23 and 24 (SC23 and SC24), J. Atmos. Sol.-Terr. Phys., 2018, vol. 177, pp. 54–62.

    Article  Google Scholar 

  12. 12

    Despirak, I.V., Lyubchich, A.A., and Kleimenova, N.G., Supersubstorms and conditions in the solar wind, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 2, pp. 170–176.

  13. 13

    Dimmock, A.P., Rosenqvist, L., Hall, J.-O., Viljanen, A., Yordanova, E., Honkonen, I., André, M., and Sjöberg, E.C., The GIC and geomagnetic response over Fennoscandia to the 7–8 September 2017 geomagnetic storm, Space Weather, 2019, vol. 17, no. 7, pp. 989–1010.

    Article  Google Scholar 

  14. 14

    Feldstein, Y.I., Popov, V.A., Cumnock, J.A., Prigancova, A., Blomberg, L.G., Kozyra, J.U., Tsurutani, B.T., Gromova, L.I., and Levitin, A.E., Auroral electrojets and boundaries of plasma domains in the magnetosphere during magnetically disturbed intervals, Ann. Geophys., 2006, vol. 24, pp. 2243–2276.

    Article  Google Scholar 

  15. 15

    Gjerloev, J.W., A global ground-based magnetometer initiative, EOS, Trans. Am. Geophys. Union, 2009, vol. 90, no. 27, pp. 230–231.

    Article  Google Scholar 

  16. 16

    Gjerloev, J.W., The SuperMAG data processing technique, J. Geophys. Res., 2012, vol. 117, no. A9, A09213.

    Article  Google Scholar 

  17. 17

    Hajra, R. and Tsurutani, B.T., Interplanetary shocks inducing magnetospheric supersubstorms (SML < –2500 nT): Unusual auroral morphologies and energy flow, Astrophys. J., 2018, vol. 858, no. 2, id 123.

  18. 18

    Hajra, R., Tsurutani, B.T., and Echer, E., Gonzalez, W.D., Gjerloev J.W. Supersubstorms (SML < –2500nT): Magnetic storm and solar cycle dependences, J. Geophys. Res., 2016, vol. 121, no. 8, pp. 7805–7816.

    Article  Google Scholar 

  19. 19

    Huttunen, K.E.J., Kilpua, S.P., Pulkkinen, A., Viljanen, A., and Tanskanen, E., Solar wind drivers of large geomagnetically induced currents during the solar cycle 23, Space Weather, 2008, vol. 6, no. 10, S10002.

    Article  Google Scholar 

  20. 20

    Kamide, Y., Akasofu, S.-I., Deforest, S.E., and Kisabeth, J.L., Weak and intense substorms, Planet. Space Sci., 1975, vol. 23, no. 4, pp. 579–584.

    Article  Google Scholar 

  21. 21

    Kamide, Y., Perreault, P.D., Akasofu, S.-I., and Winningham, J.D., Dependence of substorm occurrence probability, on the interplanetary magnetic field and on the size of the auroral oval, J. Geophys. Res., 1977, vol. 82, no. 35, pp. 5521–5528.

    Article  Google Scholar 

  22. 22

    Kappenman, J.G., Storm sudden commencement events and the associated geomagnetically induced current risks to ground-based systems at low-latitude and midlatitude locations, Space Weather, 2003, vol. 1, no. 3, 1016.

  23. 23

    Kilpua, E.K.J., Madjarska, M.S., Karna, N., Wiegelmann, T., Farrugia, C., Yu, W., and Andreeova, K., Sources of the slow solar wind during the solar cycle 23/24 minimum, Sol. Phys., 2016, vol. 291, pp. 2441–2456.

    Article  Google Scholar 

  24. 24

    Kleimenova, N.G., Antonova, E.E., Kozyreva, O.V., Malysheva, L.M., Kornilova, T.A., and Kornilov, I.A., Wave structure of magnetic substorms at high latitudes, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 6, pp. 746–754.

  25. 25

    Kleimenova, N.G., Gromova, L.I., Gromov, S.V., and Malysheva, L.M., Large magnetic storm on September 7–8, 2017: High-latitude geomagnetic variations and geomagnetic Pc5 pulsations, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 5, pp. 597–606.

  26. 26

    Kleimenova, N.G., Gromova, L.I., Gromov, S.V., and Malysheva, L.M., The magnetic storm of August 25–26, 2018: Dayside high latitude geomagnetic variations and pulsations, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 6, pp. 660–667.

  27. 27

    Lui, A.T.Y., Anger, C.D., and Akasofu, S.-I., The equatorward boundary of the diffuse aurora and auroral substorms as seen by the Isis 2 auroral scanning photometer, J. Geophys. Res., 1975, vol. 80, no. 25, pp. 3603–3614.

    Article  Google Scholar 

  28. 28

    Lui, A.T.Y., Akasofu, S.-I., Hones, E.W.,Jr., Bame, S.J., and McIlwain, C.E., Observation of the plasma sheet during a contracted oval substorm in a prolonged quiet period, J. Geophys. Res., 1976, vol. 81, no. 7, pp. 1415–1419.

    Article  Google Scholar 

  29. 29

    McPherron, R.L., Russell, C.T., Kivelson, M.G., and Coleman, P.J., Jr., Substorms in space: The correlation between ground and satellite observations of the magnetic field, Radio Sci., 1973, vol. 8, no. 11, pp. 1059–1076.

    Article  Google Scholar 

  30. 30

    Newell, P.T. and Gjerloev, J.W., Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power, J. Geophys. Res., 2011a, vol. 116, no. A12, A12211.

    Article  Google Scholar 

  31. 31

    Newell, P.T. and Gjerloev, J.W., Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices, J. Geophys. Res., 2011b, vol. 116, no. A12, A12232.

    Article  Google Scholar 

  32. 32

    Pulkkinen, A., Bernabeu, E., Thomson, A., et al., Geomagnetically induced currents: Science, engineering, and applications readiness, Space Weather, 2017, vol. 15, no. 7, pp. 828–856.

    Article  Google Scholar 

  33. 33

    Sakharov, Ya.A., Danilin, A.N., Ostafiychuk, R.M., Katkalov, Yu.V., and Kudryashova, N.V., Geomagnetically induced currents in the power systems of the Kola peninsula at solar minimum, in Proc. 8th Int. Symp. on Electromagnetic Compatibility and Electromagnetic Ecology, St. Petersburg, 2009, pp. 237–238.

  34. 34

    Scolini, C., Chané, E., Temmer, M., et al., CME–CME interactions as sources of CME Geoeffectiveness: The formation of the complex ejecta and intense geomagnetic storm in early September 2017, Astrophys. J., 2020, vol. 247, no. 1.

  35. 35

    Tanskanen, E.I., Pulkkinen, T.I., Viljanen, A., Mursula, K., Partamies, N., and Slavin, J.A., From space weather toward space climate time scales: Substorm analysis from 1993 to 2008, J. Geophys. Res., 2011, vol. 116, no. A5, A00I34.

    Article  Google Scholar 

  36. 36

    Tsurutani, B.T., Gonzales, W.D., Guarnieri, F., Kamide, Y., Zhou, X., and Arballo, J.K., Are high-intensity long-duration continuous AE activity (HILDCAA) events substorm expansion events?, J. Atmos. Sol.-Terr. Phys., 2004, vol. 66, no. 2, pp. 167–176.

    Article  Google Scholar 

  37. 37

    Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., et al., Corotating solar wind streams and recurrent geomagnetic activity: A review, J. Geophys. Res., 2006, vol. 111, no. A7, A07S01.

    Article  Google Scholar 

  38. 38

    Tsurutani, B.T., Hajra, R., Echer, E., and Gjerloev, J.W., Extremely intense (SML ≤ –2500 nT) substorms: Isolated events that are externally triggered?, Ann. Geophys., 2015, vol. 33, no. 5, pp. 519–524.

    Article  Google Scholar 

  39. 39

    Viljanen, A. and Häkkinen, L., IMAGE magnetometer network, Satellite Ground- Based Coordination Sourcebook, ESA-SP-1198, Lockwood, M., Wild, M.N., and Opgenoorth, H.J., Eds., Noordwijk, The Netherlands: ESTEC, 1997, pp. 111–117.

    Google Scholar 

  40. 40

    Vorob’ev, V.G., Sakharov, Ya.A., Yagodkina, O.I., Petrukovich, A.A, and Selivanov, V.N., Geoinduced currents and their relationship with the western electrojet position and auroral precipitation boundaries, Tr. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk, 2018, vol. 4, pp. 16–28.

    Article  Google Scholar 

  41. 41

    Wang, H., Lühr, S., Ma, Y., and Ritter, P., Statistical study of the substorm onset: its dependence on solar wind parameters and solar illumination, Ann. Geophys., 2005, vol. 23, no. 6, pp. 2069–2079.

    Article  Google Scholar 

  42. 42

    Wu, C.-C., Liou, K., Lepping, R.P., and Hutting, L., The 4–10 September 2017 Sun–Earth connection events: Solar flares, coronal mass ejections/magnetic clouds, and geomagnetic storms, Sol. Phys., 2019, vol. 294, no. 9, id 110.

  43. 43

    Yermolaev, Yu.I., Large-scale structure of solar wind and its relationship with solar corona: Prognoz 7 observations, Planet. Space Sci., 1991, vol. 39, no. 10, pp. 1351–1361.

    Article  Google Scholar 

  44. 44

    Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Res., 2009, vol. 47, no. 2, pp. 81–94.

    Article  Google Scholar 

Download references


The authors are grateful to the creators of OMNI (, SuperMAG (, IMAGE (, MIRACLE (, and AMPERE (http://www.ampere/ for allowing us to use these databases in our study.


This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. KP19-270 “Issues in the Origin and Evolution of the Universe using Methods of Ground-Based Observations and Space Research” (project 28P) in the framework of state tasks of the Polar Geophysical Research Institute, the Institute of Physics of the Earth, and the Institute of Terrestrial Magnetism and Radio Wave Propagation.

Author information



Corresponding author

Correspondence to I. V. Despirak.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Despirak, I.V., Kleimenova, N.G., Gromova, L.I. et al. Supersubstorms during Storms of September 7–8, 2017. Geomagn. Aeron. 60, 292–300 (2020).

Download citation