Skip to main content
Log in

The Electric Field in the Surface Atmosphere of the Megapolis of Moscow

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of instrumental observations of the electric-field strength in the conditions of Moscow in 2014–2018 are presented and analyzed. The spectral characteristics of the electric-field variations and its daily variation are discussed. The effect of cold atmospheric fronts, hurricanes, squalls and thunderstorms, as well as technogenic phenomena (large fires), on the electric-field variation is demonstrated. It is shown that hurricanes, squalls, and thunderstorms are preceded by periods of 1 to 4 h characterized by specific electric-field variations, which can be considered a possible prognostic sign of strong atmospheric phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Adushkin, V.V. and Spivak, A.A., Fizicheskie polya v pripoverkhnostnoi geofizike (Physical Fields in Near-Surface Geophysics), Moscow: GEOS, 2014.

  2. Adushkin, V.V., Solov’ev, S.P., and Budnikov, V.A. Lithospheric sources of aerosol pollution of the atmosphere, Geol. Geofiz., 1995, vol. 36, no. 8, pp. 103–110.

    Google Scholar 

  3. Adushkin, V.V., Spivak, A.A., Kishkina, S.B., Loktev, D.N., and Solov’ev, S.P., Dynamic processes in the system of interacting geospheres at the Earth’s crust–atmosphere boundary, Izv., Phys. Solid Earth, 2006, vol. 42, no. 7, pp. 567–584.

    Article  Google Scholar 

  4. Adushkin, V.V., Spivak, A.A., Rybnov, Yu.S., and Kharlamov, V.A., Tidal waves and pressure variations in the Earth’s atmosphere, Geofiz. Issled., 2017, vol. 18, no. 3, pp. 67–80.

    Google Scholar 

  5. Anisimov, S.V. and Mareev, E.A., Aeroelectric structures in the atmosphere, Dokl. Earth Sci., 2000, vol. 371, vol. 2, pp. 369–372.

  6. Anisimov, S.V. and Mareev, E.A., Spectra of electric field pulsations in the near-surface atmosphere, Dokl. Earth Sci., 2001, vol. 381, no. 8, pp. 975–980.

    Google Scholar 

  7. Anisimov, S.V. and Shikhova, N.M., Fractal properties of aeroelectric pulsations, Geofiz. Issled., 2015, vol. 16, no. 4, pp. 41–58.

    Google Scholar 

  8. Anisimov, S.V., Galichenko, S.V., Dmitriev, E.M., Shikhova, N.M., and Afinogenov, K.V., The electric field of the surface atmosphere, in Dinamika fizicheskikh polei Zemli (Dynamics of Physical Fields of the Earth), Epov, M.I., Adushkin, V.V, and Sobolev, G.A., Eds., Moscow: Svetoch Plyus, 2011, pp. 268–296.

  9. Bell, G., Marino, A.A., and Chesson, A.L., Frequency-specific blocking in the human caused by electromagnetic fields, Neuroreport, 1994, vol. 5, pp. 510–512.

    Article  Google Scholar 

  10. Belotserkovskii, O.M., Andrushchenko, V.A., and Shevelev, Yu.M., Dinamika vikhreobraznykh techenii v atmosfere, obuslovlennykh prirodnymi faktorami (Dynamics of Atmospheric Vortex-Like Currents Induced by Natural Factors), Moscow: Polet Dzhanotana, 2013.

  11. Chalmers, J.A., Atmospheric Electricity, Oxford: Pergamon, 1967; Leningrad: Gidrometeoizdat, 1973.

  12. Chereshnev, V.A., Gamburtsev, A.G., Sigachev, A.V., Verkhoturova, L.F., Gorbarenko, E.V., and Gamburtseva, N.G., Vneshnie vozdeistviya–stressy–zabolevaemost’ (External Impacts–Stresses–Morbidity Rate), Moscow: Nauka, 2016.

  13. Deshcherevskii, A.V. and Sidorin, A.Ya., Changes in representativity of the earthquake catalogue for Greece in time and space, Seism. Instrum., 2012, vol. 48, no. 3, pp. 292–301.

    Article  Google Scholar 

  14. Dolezalek, H., Zur berechnung des luftelektrischen Strokreises III. Kontrolle des Ohmschen Gesetzes durch Messung, Geofis. Pura Appl., 1960, vol. 46, no. 1, pp. 125–144.

    Article  Google Scholar 

  15. Dolezalek, H., Discussion of fundamental problem of atmospheric electricity, Pure Appl. Geophys., 1972, vol. 100, no. 1, pp. 8–43.

    Article  Google Scholar 

  16. Dubrov, A.M., Mkhitaryan, V.S., and Troshin, L.I., Mnogomernye statisticheskie metody: uchebnik dlya studentov ekonomicheskikh spetsial’nostei vysshikh uchebnykh zavedenii (Multidimensional Statistical Methods: Handbook for Students of Economic Specialties in Higher Educational Institutions), Moscow: Finansy i statistika, 2003.

  17. Ekologiya cheloveka v izmenyayushchemsya mire (Human Ecology in the Changing World), Ekaterinburg: UrO RAN, 2008.

  18. Gokhberg, M.B., Kolosnitsyn, N.I., and Nikolaev, A.I., Tidal deformations and the electrokinetic effect in a two-layer fluid-saturated porous medium, Izv., Phys. Solid Earth, 2007, vol. 43, no. 8, pp. 85–89.

    Article  Google Scholar 

  19. Gostintsev, Yu.A., Ivanov, E.A., Kopylov, N.I., and Shatskikh, Yu.V., Possible influence of large fires on atmosphere, Fiz. Goreniya Vzryva, 1985, vol. 19, no. 4, pp. 62–64.

    Google Scholar 

  20. Grachev, A.V., The retrieval of gaps in experimental data, Vestn. Nizhegorod. Gos. Univ. im. N. I. Lobachevskogo, Ser. Radiofiz., 2004, no. 2, pp. 15–23.

  21. Grunskaya, L.V., Morozov, V.N., Efimov, V.A., and Zakirov, A.A., Lunar tides in the electric field of the atmospheric boundary layer, Russ. Phys. J., 2010, vol. 53, no. 1, pp. 23–28.

    Article  Google Scholar 

  22. Harrison, R.G., Urban smoke concentrations at Kew, London, 1898–2004, Atmos. Environ., 2006, vol. 40, pp. 3327–3332.

    Article  Google Scholar 

  23. Hoaglin, D.C., Mosteller, F., and Tukey, J.W., Understanding Robust and Exploratory Data Analysis, New York: John Wiley & Sons, 2000.

    Google Scholar 

  24. Israel, H., Atmospheric Electricity, Jerusalem: Israel Program for Scientific Translation, 1973, vol. 2.

    Google Scholar 

  25. Israelsson, S., On the conception ‘Fair weather condition’ in atmospheric electricity, Pure Appl. Geophys., 1978, vol. 116, no. 1, pp. 149–158.

    Article  Google Scholar 

  26. Israelsson, S. and Tammet, H., Variation of fair weather atmospheric electricity at Marsta Observatory, Sweden, 1993–1998, J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, pp. 1693–1703.

    Article  Google Scholar 

  27. Jamieson, K.S., Apsimona, H.M., Jamieson, S.S., Bell, J.N., and Yost, M.G., The effects of electric fields on charged molecules and particles in individual micro environments, Atmos. Environ., 2007, vol. 41, no. 25, pp. 5224–5235.

    Article  Google Scholar 

  28. Jayaratne, E.R. and Verma, T.S., Environmental aerosols and their effect on the Earth’s local fair-weather electric field, Meteorol. Atmos. Phys., 2004, vol. 86, pp. 275–280.

    Article  Google Scholar 

  29. Kamra, A.K., Fair weather space charge distribution in the lowest 2 m of the atmosphere, J. Geophys. Res., 1982, vol. 87, no. C6, pp. 4257–4263.

    Article  Google Scholar 

  30. Kandalgaonkar, S.S. and Manohar, G.K., Variation in the atmospheric electric field at tropical station during 1930–1987, Adv. Atmos. Sci., 1991, vol. 8, pp. 99–106.

    Article  Google Scholar 

  31. Kelley, M.C., The Earth’s Electric Field, San Diego, CA: Elsevier, 2014.

    Google Scholar 

  32. Kleimenova, N.G., Kozyreva, O.V., Kubitski, M., and Mikhnovski, S., Morning polar substorms and variations in the atmospheric electric field, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 1, pp. 48–57.

  33. Klimat, pogoda, ekologiya Moskvy (The Climate, Weather, and Ecology of Moscow), St. Petersburg: Gidrometeoizdat, 1995.

  34. Kolesnik, A.G., Kolesnik, S.A., and Pobachenko, S.V., Elektromagnitnaya ekologiya (Electromagnetic Ecology), Tomsk: TML-Press, 2009.

  35. Krasnogorskaya, N.V., Elektrichestvo nizhnikh sloev atmosfery i metody ego izmereniya (Electricity of Lower Atmospheric Layers and Its Measurement Methods), Leningrad: Gidrometeoizdat, 1972.

  36. Kumar, V.V., Ramachandran, V., Buadromo, V., and Prakash, J., Surface fair-weather potential gradient measurements from a small tropical island station Suva, Fiji, Earth Planets Space, 2009, vol. 61, pp. 747–753.

    Article  Google Scholar 

  37. Kuznetsov, V.V., Fizika Zemli. Uchebnik-monografiya (Terrestrial Physics. A Handbook and Monograph), Novosibirsk: IGIG, 2011.

  38. Law, J., The ionisation of the atmosphere near the ground in fair weather, Q. J. R. Meteorol. Soc., 1963, vol. 89, pp. 107–121.

    Article  Google Scholar 

  39. Marshall, T.C., Rust, W.D., Stolzenburg, M., Roedes, W.P., and Krehbiel, P.R., A study of enhanced fair weather electric fields occurring soon after sunrise, J. Geophys. Res., 1999, vol. 104, no. D20, pp. 24455– 24469.

    Article  Google Scholar 

  40. Martynyuk, V.S., Tseisler, Yu.V., and Temur’yants, N.A., Interference of the mechanisms of the influence of weak ELF electromagnetic fields on the human and animal organism, Geofiz. Protsessy Biosfera, 2012, vol. 11, no. 2, pp. 16–39.

    Google Scholar 

  41. O’Connor, W.P., Seasonal changes in diurnal variation of potential gradient at Fargo, North Dakota, Pure Appl. Geophys., 1976, vol. 114, pp. 933–943.

    Article  Google Scholar 

  42. Retalis, D. and Retalis, A., The atmospheric electric field in Athens, Greece, Meteorol. Atmos. Phys., 1997, vol. 63, pp. 235–241.

    Article  Google Scholar 

  43. Serrano, C., Reis, A.H., Rosa, R., and Lucio, P.S., Influences of cosmic radiation, artificial radioactivity and aerosol concentration upon the fair-weather atmospheric electric field in Lisbon (1955–1991), Atmos. Res., 2006, vol. 81, pp. 236–249.

    Article  Google Scholar 

  44. Shor, Ya.B., Statisticheskie metody analiza i kontrolya kachestva i nadezhnosti (Statistical Methods for Analysis and Control of Quality and Reliability), Moscow: Sovetskoe radio, 1962.

  45. Shuleikin, V.N., Atmosfernoe elektrichestvo i fizika Zemli (Atmospheric Electricity and Terrestrial Physics), Moscow: Institut problem nefti i gaza, 2006.

  46. Silva, H.G., Conceição, R., Melgão, M., Nicoll, K., Mendes, P.B., Tlemçani, M., Reis, A.H., and Harrison, R.G., Atmospheric electric field measurements in urban environment and the pollutant aerosol weekly dependence, Environ. Res. Lett., 2014, vol. 9, no. 11, id 114025. https://doi.org/10.1088/1748-9326/9/11/114025

  47. Spivak, A.A., Loktev, D.N., Rybnov, Yu.S., Soloviev, S.P., and Kharlamov, V.A., Geophysical fields of a megalopolis, Izv., Atmos. Ocean. Phys., 2016a, vol. 52, no. 8, pp. 841–852.

    Article  Google Scholar 

  48. Spivak, A.A., Kishkina, S.B., Loktev, D.N., Rybnov, Yu.S., Soloviev, S.P., and Kharlamov, V.A., Instruments and techniques for megapolis geophysical monitoring and their application in the Moscow IDG RAS Geophysical Monitoring Center, Seism. Prib., 2016b, vol. 52, no. 2, pp. 65–78.

    Google Scholar 

  49. Spivak, A.A., Rybnov, Yu.S., Soloviev, S.P., and Kharlamov, V.A., Acoustic and electric precursors of strong thunderstorm events under megalopolis conditions, Izv., Atmos. Ocean. Phys., 2018a, vol. 54, no. 7, pp. 738–744.

    Article  Google Scholar 

  50. Spivak, A.A., Rybnov, Yu.S., and Kharlamov, V.A., Variations in geophysical fields during hurricanes and squalls, Dokl. Earth Sci., 2018b, vol. 480, no. 2, pp. 788–791.

    Article  Google Scholar 

  51. Tietjen, G.L. and Moore, R.H., Some Grubbs-type statistics for the detection of several outliers, Technometrics, 1972, vol. 14, pp. 583–597.

    Article  Google Scholar 

  52. Tikhonov, M.N., Kudrin, I.D., Dovgusha, V.V., and Dovgusha, L.V., Electromagnetic medium and the man, Vopr. Okhr. Okruzh. Sredy, 1997, no. 11, pp. 55–84.

  53. Tuzhilkin, D.A., Apryatkina, M.L., and Borodin, A.S., Influence of variations in the physical fields of the environment on the human cardiovascular system, in Fizika okruzhayushchei sredy (Environmental Physics), Tomsk: Tomskoe universitetskoe izd-vo, 2011, pp. 285–288.

  54. Widrow, B. and Stearns, S., Adaptive Signal Processing, New York: Springer, 1985; Moscow: Radio i svyaz', 1989.

  55. Zilitinkevich, S.S., Atmosfernaya turbulentnost' i planetarnye pogranichnye sloi (Atmospheric Turbulence and Planetary Boundary Layer), Moscow: Fizmatlit, 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Spivak, S. A. Riabova or V. A. Kharlamov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spivak, A.A., Riabova, S.A. & Kharlamov, V.A. The Electric Field in the Surface Atmosphere of the Megapolis of Moscow. Geomagn. Aeron. 59, 467–478 (2019). https://doi.org/10.1134/S0016793219040169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219040169

Navigation