Skip to main content
Log in

Position of the Energetic Electron Trapping Boundary Relative to Auroral Oval Boundaries during the Magnetic Storm on December 19–22, 2015, Based on Data from the Meteor-M2 Satellite

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract—

This paper studies the position of the trapping boundary of electrons with energies of >100 keV relative to the equatorial boundary of the auroral oval during a large magnetic storm on December 19–22, 2015, with a minimum Dst of –170 nT as measured by the Meteor-M2–1 satellite. Energetic electrons with energies from 0.1 to 13 MeV and fluxes of low-energy electrons with energies from 0.13 to 16.64 keV have been measured. It is taken into account that the pitch-angle distribution of energetic electrons near the trapping boundary is almost isotropic. It is shown that the energetic electron trapping boundary during the considered storm is detected inside the auroral oval or near its polar boundary. The distance along the geomagnetic latitude between the energetic electron trapping boundary and the equatorial boundary of the auroral oval is determined. The dependence of this distance on time for crossings of the oval before and after midnight is analyzed. It is shown that the distance between the trapping boundary and the equatorial boundary of the oval during the storm decreases after midnight and increases before midnight. These values are almost equal near minimum Dst. The significance of the results obtained for a description of changes in the magnetospheric topology during magnetic storms is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Akasofu, S.I., The development of the auroral substorm, Planet. Space Sci., 1964, vol. 12, pp. 273–282. https://doi.org/10.1016/0032-0633(64)90151-5

    Article  Google Scholar 

  2. Akasofu, S.I., Polar and Magnetospheric Substorms, Dordrecht: D. Reidel, 1968; Moscow: Mir, 1971.

  3. Antonova, E.E. and Stepanova, M.V., The problem of the acceleration of electrons of the outer radiation belt and magnetospheric substorms, Earth Planets Space, 2015, vol. 67. https://doi.org/10.1186/s40623-015-0319-7

  4. Antonova, E.E., Kirpichev, I.P., Vovchenko, V.V., Stepanova, M.V., Riazantseva, M.O., Pulinets, M.S., Ovchinnikov, I.L., and Znatkova, S.S., Characteristics of plasma ring, surrounding the earth at geocentric distances ~7–10R E, and magnetospheric current systems, J. Atmos. Sol.-Terr. Phys., 2013, vol. 99, no. 7, pp. 85–91. https://doi.org/10.1016/j.jastp.2012.08.013

    Article  Google Scholar 

  5. Antonova, E.E., Vorobjev, V.G., Kirpichev, I.P., and Yagodkina, O.I., Comparison of the plasma pressure distributions over the equatorial plane and at low altitudes under magnetically quiet conditions, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 3, pp. 278–281. https://doi.org/10.7868/S001679401403002X

  6. Antonova, E.E., Vorobjev, V.G., Kirpichev, I.P., Yagodkina, O.I., and Stepanova, M.V., Problems with mapping the auroral oval and magnetospheric substorms, Earth Planets Space, 2015, vol. 67. https://doi.org/10.1186/s40623-015-0336-6

  7. Antonova, E.E., Stepanova, M., Kirpichev, I.P., et al., Structure of magnetospheric current systems and mapping of high latitude magnetospheric regions to the ionosphere, J. Atmos. Sol.-Terr. Phys., 2018, vol. 177, pp. 103–114.

    Article  Google Scholar 

  8. Baker, D.N., Elkington, S.R., Li, X., and Wiltberger, M.J., Particle acceleration in the inner magnetosphere, in The Inner Magnetosphere: Physics and Modeling, Pulkinen, T.I., Tsyganenko, N.A., and Friedel, R.H.W.V., Eds., Washington D.C., Am. Geophys. Union, 2005, pp. 73–85.

    Google Scholar 

  9. Feldstein, Ya.I., Some problems in the morphology of polar auroras and magnetic disturbances at high latitudes, Geomagn. Aeron., 1963, vol. 3, no. 2, pp. 227–239.

    Google Scholar 

  10. Feldstein, Y.I. and Starkov, G.V., The auroral oval and the boundary of closed field lines of geomagnetic field, Planet. Space Sci., 1970, vol. 18, pp. 501–508. https://doi.org/10.1016/0032-0633(70)90127-3

    Article  Google Scholar 

  11. Feldstein, Y.I., Vorobjev, V.G., Zverev, V.L., and Förster, M., Investigations of the auroral luminosity distribution and the dynamics of discrete auroral forms in a historical retrospective, Hist. Geo- Space Sci., 2014, vol. 5, no. 1, pp. 81–134. https://doi.org/10.5194/hgss-5-81-2014

    Article  Google Scholar 

  12. Frank, L.A., Relationship of the plasma sheet, ring current, trapping boundary, and plasmapause near the magnetic equator and local midnight, J. Geophys. Res., 1971, vol. 76, pp. 2265–2274. https://doi.org/10.1029/JA076i010p02265

    Article  Google Scholar 

  13. Frank, L.A., Van Allen, J.A., and Craven, J.D., Large diurnal variation of geomagnetically trapped and precipitated electrons observed at low altitudes, J. Geophys. Res., 1964, vol. 69, pp. 3155–3167. https://doi.org/10.1029/JZ069i015p03155

    Article  Google Scholar 

  14. Fritz, T.A., High-latitude outer-zone boundary region for ≥40-keV electrons during geomagnetically quiet periods, J. Geophys. Res., 1968, vol. 73, pp. 7245–7255. https://doi.org/10.1029/JA073i023p072457

    Article  Google Scholar 

  15. Fritz, T.A., Study of the high-latitude, outer-zone boundary region for ≥40-keV electrons with satellite Injun 3, J. Geophys. Res., 1970, vol. 75, pp. 5387–5400. https://doi.org/10.1029/JA075i028p05387

    Article  Google Scholar 

  16. Imhof, W.L., Mobilia, J., Datlowe, D.W., Voss, H.D., and Gaines, E.E., Longitude and temporal variations of energetic electron precipitation near the trapping boundary, J. Geophys. Res., 1990, vol. 95, pp. 3829–3839. https://doi.org/10.1029/JA095iA04p03829

    Article  Google Scholar 

  17. Imhof, W.L., Voss, H.D., Mobilia, J., Datlowe, D.W., and Gaines, E.E., The precipitation of relativistic electrons near the trapping boundary, J. Geophys. Res., 1991, vol. 96, pp. 5619–5629. https://doi.org/10.1029/90JA02343

    Article  Google Scholar 

  18. Imhof, W.L., Voss, H.D., Mobilia, J., Datlowe, D.W., Gaines, E.E., McGlennon, J.P., and Inan, U.S., Relativistic electron microbursts, J. Geophys. Res., 1992, vol. 97, pp. 13 289–13 837. https://doi.org/10.1029/92JA01138

    Google Scholar 

  19. Imhof, W.L., Robinson, R.M., Nightingale, R.W., Gaines, E.E., and Vondrak, R.R., The outer boundary of the earth’s electron radiation belt. dependence upon L, energy, and equatorial pitch angle, J. Geophys. Res., 1993, vol. 98, pp. 5925–5934. https://doi.org/10.1029/92JA02553

    Article  Google Scholar 

  20. Imhof, W.L., Chenette, D.L., Gaines, E.E., and Winningham, J.D., Characteristics of electrons at the trapping boundary of the radiation belt, J. Geophys. Res., 1997, vol. 102, pp. 95–104. https://doi.org/10.1029/96JA02797

    Article  Google Scholar 

  21. Kalegaev, V.V., Barinova, V.O., Myagkova, I.N., Eremeev, V.E., Parunakyan, D.A., Nguyen, M.D., and Barinov, O.G., Empirical model of the high-latitude boundary of the Earth’s outer radiation belt at altitudes of up to 1000 km, Cosmic Res., 2018, vol. 56, no. 1, pp. 32–37. https://doi.org/10.7868/S0023420618010053

    Article  Google Scholar 

  22. Kanekal, S.G., Baker, D.N., Blake, J.B., Klecker, B., Cummin, J.R., Mewaldt, R.A., Mason, G.M., and Mazur, J.E., High-latitude energetic particle boundaries and the polar cap: A statistical study, J. Geophys. Res., 1998, vol. 103, pp. 9367–9372. https://doi.org/10.1029/97JA03669

    Article  Google Scholar 

  23. Kirpichev, I.P., Yagodkina, O.I., Vorobjev, V.G., and Antonova, E.E., Position of projections of the nightside auroral oval equatorward and poleward edges in the magnetosphere equatorial plane, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 4, pp. 407–414. https://doi.org/10.7868/S0016794016040064

  24. Kuznetsov, S.N. and Tverskaya, L.V., Radiation belts, in Modeli Kosmosa, (Models of the Cosmos), Panasyuk, M.I., Ed., Moscow: Universitet, 2007, vol. 1, ch. 3.4, pp. 518–546.

  25. McDiarmid, I.B. and Burrows, J.R., Local time asymmetries in the high-latitude boundary of the outer radiation zone for different electron energies, Can. J. Phys., 1998, vol. 46, pp. 49–57. https://doi.org/10.1139/p68-007

    Article  Google Scholar 

  26. Newell, P.T., Liou, K., and Wilson, G.R., Polar cap particle precipitation and aurora: Review and commentary, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, pp. 199–215. https://doi.org/10.1016/j.jastp.2008.11.004

    Article  Google Scholar 

  27. Reeves, G.D., McAdams, K.L., Friedel, R.H.W., and O’Brien, T.P., Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., vol. 30, no. 10. https://doi.org/10.1029/2002GL016513

  28. Rezhenov, B.V., Vorob’ev, V.G., Tsirs, V.E., Lyatskii, V.B., Pervaya, T.I., and Savin, B.I., Distribution of intruding low-energy electrons in the evening–premidnight sector according to Kosmos-426 data, Geomagn. Aeron., 1975, vol. 13, no. 4, pp. 521–527.

    Google Scholar 

  29. Riazantseva, M.O., Myagkova, I.N., Karavaev, M.V., Antonova, E.E., Ovchinnikov, I.L., Marjin, B.V., Saveliev, M.A., Feigin, V.M., and Stepanova, M.V., Enhanced energetic electron fluxes at the region of the auroral oval during quiet geomagnetic conditions November 2009, Adv. Space Res., 2012, vol. 50, pp. 623–631. https://doi.org/10.1016/j.asr.2012.05.015

    Article  Google Scholar 

  30. Riazanteseva, M.O., Antonova, E.E., Stepanova, M.V., Marjin, B.V., Rubinshtein, I.A., Barinova, V.O., and Sotnikov, N.V., A relation between the locations of the polar boundary of outer electron radiation belt and the equatorial boundary of the auroral oval, Ann. Geophys., 2018, vol. 36, pp. 1131–1140. https://doi.org/10.5194/angeo-36-1131-2018

    Article  Google Scholar 

  31. Turner, D.L., Angelopoulos, V., Li, W., Hartinger, M.D., Usanova, M., Mann, I.R., Bortnik, J., and Shprits, Y., On the storm-time evolution of relativistic electron phase space density in Earth’s outer radiation belt, J. Geophys. Res.: Space Phys., 2013, vol. 118, pp. 2196–2212. https://doi.org/10.1002/jgra.50151

    Article  Google Scholar 

  32. Vernov, S.N., Gorchakov, E.V., Kuznetsov, S.N., Logachev, Yu.I., Sosnovets, E.N., and Stolpovsky, V.G., Particle fluxes in the outer geomagnetic field, Rev. Geophys. Space, 1969, vol. 7, pp. 257–280. https://doi.org/10.1029/RG007i001p00257

    Article  Google Scholar 

  33. Yahnin, A.G., Sergeev, V.A., Gvozdevsky, B.B., and Vennerstrum, S., Magnetospheric source region of discrete auroras inferred from their relationship with isotropy boundaries of energetic particles, Ann. Geophys., 1997, vol. 15, pp. 943–958. https://doi.org/10.1007/s00585-997-0943-z

    Article  Google Scholar 

  34. Yermolaev, Y.I. and Nikolaeva, N.S., Catalog of large-scale solar wind phenomena during 1976–2016, VarSITI Newsletter, 2017, vol. 14, pp. 6–7. https://www.researchgate.net/ publication/318239148.

  35. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Res., 2009, vol. 47, no. 2, pp. 81–94.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the team of developers of the equipment for METEOR satellites and the creators of the OMNI database.

This work was supported by the Russian Foundation for Basic Research, project no. 18-05-00362.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Sotnikov or E. E. Antonova.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotnikov, N.V., Antonova, E.E., Ryazantseva, M.O. et al. Position of the Energetic Electron Trapping Boundary Relative to Auroral Oval Boundaries during the Magnetic Storm on December 19–22, 2015, Based on Data from the Meteor-M2 Satellite. Geomagn. Aeron. 59, 136–146 (2019). https://doi.org/10.1134/S0016793219020142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219020142

Navigation