Skip to main content
Log in

Synchronous Variations in the Atmospheric Pressure and Electric Field during the Passage of the Solar Terminator

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The paper presents the field observation data on variations in the pressure and electric field intensity in the near-surface atmospheric layer during the passage of the morning solar terminator in several regions of the Russian Federation: on Kamchatka, Kola Peninsula, and in Vladimir oblast. Analysis of the data shows that the pressure and electric field intensity undergo synchronous variations during the passage of the solar terminator. An isolated series of events has a mutual correlation coefficient of variations in the pressure and electric field intensity in the period of passage of the solar terminator that exceeded 0.9 with a subsequent decrease to the background values of ≈0.2–0.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Afraimovich, E.L., First GPS-TEC evidence for the wave structure excited by the solar terminator, Earth Planets Space, 2008, no. 60, pp. 895–900.

  2. Afraimovich, E.L., Edemskiy, I.K., Voeykov, S.V., Yasyukevich, Yu.V., and Zhivetiev, I.V., The first GPS-TEC imaging of the space structure of MS wave packets excited by the solar terminator, Ann. Geophys., 2009, vol. 27, pp. 1521–1525.

    Article  Google Scholar 

  3. Afraimovich, E.L., Edemsky, I.K., Voeykov, S.V., Yasyukevich, Yu.V., and Zhivetiev, I.V., MHD nature of ionospheric wave packets generated by the solar terminator, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 1, pp. 79–95.

  4. Antonova, V.P., Guseinov, Sh.Sh., Drobzhev, V.I., et al., Integrated experimental study of atmospheric waves generated by solar terminator, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1988, vol. 24, no. 2, pp. 134–143.

    Google Scholar 

  5. Antonova, V.P., Dungenbaeva, K.E., Zalizovskii, A.V., Inchin, A.S., Kryukov, S.V., Somsikov, V.M., and Yampol’skii, Yu.M., Difference between the spectra of acoustic gravity waves in daytime and nighttime hours due to nonequilibrium effects in the atmosphere, Geomagn. Aeron. (Engl. Transl.), 2006, vol. 46, no. 1, pp. 101–109.

  6. Borchevkina, O.P., Karpov, I.V., Karpov, A.I., and Il’minskaya, A.V., Acoustic–gravity waves in observations of tropospheric and ionospheric parameters over Kaliningrad, in Proc. XXXIX Annual Seminar Physics of Auroral Phenomena, Apatity, 2016, pp. 108–111. 2016.

  7. Chalmers, J.A., Atmospheric Electricity, Oxford: Pergamon, 1967; Leningrad: Gidrometeoizdat, 1973.

  8. Fritt, D.C. and Alexander, M.J., Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 2003, vol. 41, pp. 1–64.

    Google Scholar 

  9. Khrgian, A.Kh., Fizika atmosfery (Atmospheric Physics), vol. 1, Leningrad: Gidrometeoizdat, 1978.

  10. Kozlov, D.A., Leonovich, A.S., and Edemskii, I.K., Generation of slow magnetosonic oscillations by solar terminator in the Earth’s plasmasphere, Soln.-Zemnaya Fiz., 2012, no. 20, pp. 63–71.

  11. Kuznetsov, V.V. and Cherneva, N.V., Study of Forbush decreases and effects of the terminator in the atmospheric electric field at the Paratunka observatory (Kamchatka), Vestn. Kamchatskoi Reg. Assots. Uchebno-Nauchnyi Tsentr, Nauki Zemle,2008, vol. 11, no. 1, pp. 89–97.

    Google Scholar 

  12. Laštovička, J., Forcing of the ionosphere by waves from below, J. Atmos. Solar. Terr. Phys., 2006, vol. 68, pp. 479–497.

    Article  Google Scholar 

  13. Lizunov, G.V. and Fedorenko, A.K., Atmospheric gravity waves generation by solar terminator according to “Atmosphere Explorer-E” satellite data, Radio Phys. Radio Astron., 2006, vol. 11, no. 1, pp. 49–69.

    Google Scholar 

  14. Lyubushin, A.A., Analiz dannykh sistem geofizicheskogo i ekologicheskogo monitoringa (Geophysical and Environmental Monitoring System Data Analysis), Moscow: Nauka, 2007.

  15. Marshall, T.C., Rust, W.D., Stolzenburg, M., Roeder, W.P., and Krehbiel, P.R., A study of enhanced fair-weather electric fields occurring soon after sunrise, J. Geophys. Res., 1999, vol. 104, no. D20, pp. 24455–24469.

    Article  Google Scholar 

  16. Mikhailova, G.A., Kapustina, O.V., and Smirnov, S.E., Nature of the sunrise effect in daily electric field variations at Kamchatka: 2. Electric field frequency variations, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 2, pp. 234–242.

  17. Salikhov, N.M., Somsikov, V.M., Zhumbaev, B.T., and Andreev, A.B., Sunrise effects in the micropulsations of atmospheric pressure in highlands. http://nblib.library.kz/ elib/library.kz/journal/Salixov%20%20Somsikov%20%20 Jumabaev%20%20Andreev.pdf.

  18. Soloviev, S.P. and Surkov, V.V., Electric disturbances in the atmospheric surface layer due to an air shock wave, Fiz. Goreniya Vzryva, 1994, vol. 30, no. 1, pp. 117–121.

    Google Scholar 

  19. Soloviev, S.P., Rybnov, Yu.S., Kharlamov, V.A., and Krasheninnikov, A.V., Acoustic gravity waves and the atmospheric electric field perturbations accompanying them, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 3, pp. 335–346.

  20. Somsikov, V.M., Solnechnyi terminator i dinamika atmosfery (Solar Terminator and Atmospheric Dynamics), Alma-Ata: Nauka, 1983.

  21. Somsikov, V.M., Solar terminator and dynamic phenomena in the atmosphere: A review, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 6, pp. 707–719.

  22. Somsikov, V.M. and Troitskii, B.V., Generation of disturbances in the atmosphere when the solar terminator passes through the atmosphere, Geomagn. Aeron., 1975, vol. 15, no. 5, pp. 856–860.

    Google Scholar 

  23. Spivak, A.A., Kishkina, S.B., Loktev, D.N., Rybnov, Yu.S., Soloviev, S.P., and Kharlamov, V.A., Instrumentation and techniques for monitoring the geophysical fields of a megapolis and their use in Moscow Geophysical Monitoring Center at the Institute of Geosphere Dynamics, RAS, Seism. Prib., 2016, vol. 52, no. 2, pp. 65–78.

    Google Scholar 

  24. Yiğit, A. and Medvedev, A., Internal wave coupling processes in earth’s atmosphere, Adv. Space Res., 2015, vol. 55, pp. 983–1003.

    Article  Google Scholar 

  25. Yiğit, E., Knízova, P.K., Georgieva, K., and Ward, W., A review of vertical coupling in the Atmosphere–Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity, J. Atmos. Sol.-Terr. Phys., 2016, vol. 141, pp. 1–12.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed by government assignment, subject 0146-2019-0009.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. S. Rybnov or S. P. Soloviev.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybnov, Y.S., Soloviev, S.P. Synchronous Variations in the Atmospheric Pressure and Electric Field during the Passage of the Solar Terminator. Geomagn. Aeron. 59, 234–241 (2019). https://doi.org/10.1134/S0016793219020129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219020129

Navigation