Skip to main content
Log in

Solar Activity Index for the Long-Term Prediction of the F2 Layer Critical Frequency

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Based on a comparison of the 12-month moving averages of the solar activity indices with the ionospheric index of solar activity IG12 for the period of 1954–2014, we estimated the relative accuracies of the solar indices as indicators of solar activity for the medians of the F2 layer critical frequency for a month. These solar indices are the previous (Rz12) and new (Ri12) versions of the relative sunspot number, as well as the 10.7 cm solar radio flux F12 scaled to Rz12, (Rf12) correction for low solar activity. The interval of 1954–2014 spans solar cycles 19–23 and incomplete cycle 24. It was found that, on the whole, the index Ri12 is more accurate than Rz12 and that the indices RF12 and Rf12 are more accurate than Rz12 and Ri12. The accuracies of the indices RF12 and Rf12 for cycles 19–20 coincide. For cycles 21–24, the index Rf12 is more accurate than RF12, and this advantage of Rf12 is especially distinct in cycles 23–24. The index Rf12 differs from RF12 only by the introduction of a new additional correction for low solar activity. This analytical correction was obtained from the condition of the minimum average deviation of Rf12 from IG12, which makes the index Rf12 advantageous as the most adequate indicator of the solar activity for the foF2 median among the solar indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Araujo-Pradere, E.A., Buresova, D., Fuller-Rowell, D.J., and Fuller-Rowell, T.J., Initial results of the evaluation of IRI hmF2 performance for minima 22–23 and 23–24, Adv. Space Res., 2013, vol. 51, no. 4, pp. 630–638.

    Article  Google Scholar 

  2. Balogh, A., Hudson, H.S., Petrovay, K., and von Steiger, R., Introduction to the solar activity cycle: Overview of causes and consequences, Space Sci. Rev., 2014, vol. 186, no. 1, pp. 1–15.

    Article  Google Scholar 

  3. Bilitza, D., The International Reference Ionosphere—Status 2013, Adv. Space Res., 2015, vol. 55, no. 8, pp. 1914–1927.

    Article  Google Scholar 

  4. Bilitza, D., Brown, S.A., Wang, M.Y., Souza, J.R., and Roddy, P.A., Measurements and IRI model predictions during the recent solar minimum, J. Atmos. Sol.-Terr. Phys., 2012, vol. 86, pp. 99–106.

    Article  Google Scholar 

  5. Bowman, B.R., Tobiska, W.K., Marcos, F.A., Huang, C.Y., Lin, C.S., and Burke, W.J., A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices, in AIAA/AAS Astrodynamics Specialist Conference, AIAA, 2008–6438.

  6. Chen, Y., Liu, L., and Wan, W., Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007–2009?, J. Geophys. Res., 2011, vol. 116, A04304. https://doi.org/10.1029/2010JA016301

    Article  Google Scholar 

  7. Clette, F., Svalgaard, L., Vaquero, J.M., and Cliver, E.W., Revisiting the sunspot number: A 400-year perspective on the solar cycle, Space Sci. Rev., 2014, vol. 186, pp. 35–103.

    Article  Google Scholar 

  8. Clette, F., Cliver, E.W., Lefèvre, L., Svalgaard, L., and Vaquero, J.M., Revision of the sunspot number(s), Space Weather, 2015, vol. 13. https://doi.org/10.1002/2015SW001264

  9. Deminov, M.G., Solar activity index for long-term ionospheric forecasts, Cosmic Res., 2016, vol. 54, no. 1, pp. 1–7.

    Article  Google Scholar 

  10. Emmert, J.T., McDonald, S.E., Drob, D.P., Meier, R.R., Lean, J.L., and Picone, J.M., Attribution of interminima changes in the global thermosphere and ionosphere, J. Geophys. Res.: Space, 2014, vol. 119, pp. 6657–6688. https://doi.org/10.1002/2013JA019484

    Article  Google Scholar 

  11. Floyd, L., Newmark, J., Cook, J., Herring, L., and McMullin, D., Solar EUV and UV spectral irradiances and solar indices, J. Atmos. Sol.-Terr. Phys., 2005, vol. 67, nos. 1–2, pp. 3–15.

    Article  Google Scholar 

  12. Gulyaeva, T.L., Modification of the solar activity indices in the International Reference Ionosphere IRI and IRI-Plas models due to recent revision of sunspot number time series, Sol.-Terr. Phys., 2016, vol. 2, no. 3, pp. 87–98.

    Google Scholar 

  13. Hathaway, D.H., The solar cycle, living rev., Sol. Phys., 2015, vol. 12, no. 4. https://doi.org/10.1007/lrsp-2015-4

  14. ITU-R. Choice of Indices for Long-Term Ionospheric Predictions, Recommendation ITU-R P.371-8, Geneva: International Telecommunication Union, 1999.

  15. ITU-R. Reference Ionospheric Characteristics, Recommendation ITU-R P.1239-3, Geneva: International Telecommunication Union, 2012.

  16. Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Tokumaru, M., Fujiki, K., Jose, L., and Sridharan, R., A 20 year decline in solar photospheric magnetic fields: Inner-heliospheric signatures and possible implications, J. Geophys. Res.: Space, 2015, vol. 120, pp. 5306–5317. https://doi.org/10.1002/2015JA021123

    Article  Google Scholar 

  17. Jones, W.B. and Gallet, R.M., The representation of diurnal and geographic variations of ionospheric data by numerical methods, ITU Telecommun. J., 1962, vol. 29, pp. 129–147.

    Google Scholar 

  18. Jones, W.B. and Gallet, R.M., The representation of diurnal and geographic variations of ionospheric data by numerical methods, 2. Control of instability, ITU Telecommun. J., 1965, vol. 32, pp. 18–28.

    Google Scholar 

  19. Liu, R., Smith, P., and King, J., A new solar index which leads to improved foF2 predictions using the CCIR atlas, Telecommun. J., 1983, vol. 50, no. 8, pp. 408–414.

    Google Scholar 

  20. Livingston, W., Penn, M.J., and Svalgaard, L., Decreasing sunspot magnetic fields explain unique 10.7 cm radio flux, Astrophys. J. Lett., 2012, vol. 757, id L8. https://doi.org/10.1088/2041-8205/757/1/L8

  21. Lukianova, R. and Mursula, K., Changed relation between sunspot numbers, solar UV/EUV radiation and TSI during the declining phase of solar cycle 23, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, no. 2, pp. 235–240.

    Article  Google Scholar 

  22. Lühr, H. and Xiong, C., IRI-2007 model overestimates electron density during the 23/24 solar minimum, Geophys. Res. Lett., 2010, vol. 37, L23101. https://doi.org/10.1029/2010GL045430

    Article  Google Scholar 

  23. Nava, B., Coisson, P., and Radicella, S.M., A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, no. 15, pp. 1856–1862.

    Article  Google Scholar 

  24. Perna, L. and Pezzopane, M., foF2 vs Solar Indices for the Rome station: Looking for the best general relation which is able to describe the anomalous minimum between cycles 23 and 24, J. Atmos. Sol.-Terr. Phys., 2016, vol. 148, pp. 13–21.

    Article  Google Scholar 

  25. Qian, L., Solomon, S.C., and Roble, R.G., Secular changes in the thermosphere and ionosphere between two quiet sun periods, J. Geophys. Res.: Space, 2014, vol. 119, pp. 2255–2262. https://doi.org/10.1002/2013JA019438

    Article  Google Scholar 

  26. Sezen, U., Gulyaeva, T.L., and Arikan, F., Performance of solar proxy options of IRI-Plas model for equinox seasons, J. Geophys. Res.: Space, 2018, vol. 123, pp. 1441–1456. https://doi.org/10.1002/2017JA024994

    Article  Google Scholar 

  27. Solomon, S.C., Qian, L., and Burns, A.G., The anomalous ionosphere between solar cycles 23 and 24, J. Geophys. Res.: Space, 2013, vol. 118, pp. 6524–6535. https://doi.org/10.1002/jgra.50561

    Article  Google Scholar 

  28. Svalgaard, L. and Hansen, W.W., Solar activity—past, present, future, J. Space Weather Space Clim., 2013, vol. 3, A24. https://doi.org/10.1051/swsc/2013046

    Article  Google Scholar 

  29. Zolesi, B. and Cander, L.R., Ionospheric Prediction and Forecasting, Berlin: Springer, 2014.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

The data on the solar activity indices were taken from the websites http://sidc.oma.be/silco (WDC-SILSO, Royal Observatory of Belgium, Brussels) and http://www.ukssdc.ac.uk/wdcc1 (World Data Center for Solar-Terrestrial Physics, Chilton).

The study is supported in part by the Russian Foundation for Basic Research (project no. 17-05-00427) and Program 28 of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Deminov.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deminov, M.G., Deminova, G.F. Solar Activity Index for the Long-Term Prediction of the F2 Layer Critical Frequency. Geomagn. Aeron. 59, 177–184 (2019). https://doi.org/10.1134/S0016793219020063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219020063

Navigation