Skip to main content
Log in

Solar Radiation Change and Climatic Effects on Decennial–Centennial Scales

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The causes of climatic effects associated with a change in orbital parameters at decennial–centennial scales are still being debated in the scientific community. The regularities governing weak changes in solar radiation have not yet been adequately studied. The amount of solar radiation at some point of the Earth depends on the latitude, season, position of the Earth in its orbit relative to the Sun, and solar activity, which determines total solar irradiance (TSI). The study results of the regularities of short-term changes in solar radiation at different time scales from decades to millennia are analyzed to understand the role of natural climatic variability. The evolution of orbital factors on such time scales can affect some physical processes of weather and climate, but the main contribution to the variations of insolation for 1–100 years is made by changes in TSI (1–8 W/m2 TSI vs 0–0.2 W/m2 orbital). If the millennial trend in the decrease of orbital-induced insolation in mid-latitudes is taken into account, it leads to some increase in the estimation of the relative contribution of the anthropogenic factor to global warming. It is necessary to take into account errors (up to 5%) in calculating the average daily insolation as a function of longitude, which is up to 2.5 W/m2 during the vernal equinox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Berger, A., Loutre, M.-F., and Yin, Q., Total irradiation during any time interval of the year using elliptic integrals, Quat. Sci. Rev., 2010, vol. 29, no. 17, pp. 1968–1982.

    Article  Google Scholar 

  2. Borisenkov, E.P., Tsvetkov, A.V., and Agaponov, S.V., On some characteristics of insolation changes in the past and the future, Clim. Change, 1983, no. 5, pp. 237–244.

  3. Borisenkov, E.P., Tsvetkov, A.V., and Eddy, J.A., Combined effects of earth orbit perturbations and solar activity on terrestrial insolation. Part 1: Sample days and annual mean values, J. Atmos. Sci., 1985, vol. 42, no. 9, pp. 933–940.

    Article  Google Scholar 

  4. Cionco, R.G. and Soon, W.-H., Short-term orbital forcing: A quasi-review and a reappraisal of realistic boundary conditions for climate modeling, Earth-Sci. Rev., 2017, vol. 166, pp. 206–222.

    Article  Google Scholar 

  5. Climate Change 2014, Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Pachauri, R.K., and Meyer, L.A., Eds., Geneva: IPCC, World Meteorological Organization, 2015.

    Google Scholar 

  6. Cronin, T.W., On the choice of average solar zenith angle, J. Atmos. Sci., 2014, vol. 71, no. 8, pp. 2994–3003.

    Article  Google Scholar 

  7. Esper, J., Duthorn, E., Krusic, P.J., Timonen, M., and Buntgen, U., Northern European summer temperature variations over the common era from integrated tree-ring density records, Quat. Sci., 2014, vol. 29, no. 5, pp. 487–494.

    Article  Google Scholar 

  8. Fedorov, V.M., Interannual variability of the solar constant, Sol. Syst. Res., 2012, vol. 46, no. 2, pp. 170–176.

    Article  Google Scholar 

  9. Fedorov, V.M., Interannual variations in the duration of the tropical year, Dokl. Earth Sci., 2013, vol. 451, no. 1, pp. 750–753.

    Article  Google Scholar 

  10. Fedorov, V.M., Periodic perturbations and small variations of the solar climate of the Earth, Dokl. Earth Sci., 2014, vol. 457, no. 1, pp. 868–871.

    Article  Google Scholar 

  11. Fedorov, V.M., Latitudinal variability of incoming solar radiation in various time cycles, Dokl. Earth Sci., 2015a, vol. 460, no. 3, pp. 96–99.

    Article  Google Scholar 

  12. Fedorov, V.M., Trends in the change of se-ice area in the Northern Hemisphere and their causes, Kriosfera Zemli, 2015b, vol. 19, no. 3, pp. 52–64.

    Google Scholar 

  13. Fedorov, V.M., Spatial and temporal variations in the Earth’s solar climate in modern era, Geofiz. Protsessy Biosfera, 2015c, vol. 14, no. 1, pp. 5–22.

    Google Scholar 

  14. Fedorov, V.M., Insolyatsiya Zemli i sovremennye izmeneniya klimata (The Earth’s Insolation and Modern Climate Changes), Moscow: Fizmatlit, 2017.

  15. http://www.cru.uea.uk/cru/data/temperature.

  16. Laskar, J., Fienga, A., Gastineau, M., and Manche, H., La2010: A new orbital solution for the long-term motion of the Earth, Astron. Astrophys., 2011, vol. 532, A89.

    Article  Google Scholar 

  17. Lüdecke, H.-J. and Weiss, C.-O., Harmonic analysis of worldwide temperature proxies for 2000 years, Open Atmos. Sci. J., 2017, vol. 11, pp. 1874–2823.

    Article  Google Scholar 

  18. McGregor, H.V., Evans, M.N., Goosse, H., et al., Robust global ocean cooling trend for the pre-industrial common era, Nature Geosci., 2015, vol. 8, pp. 671–677.

    Article  Google Scholar 

  19. Milankovich, M., Matematicheskaya klimatologiya i astronomicheskaya teoriya kolebanii klimata (Mathematical Climatology and Astronomical Theory of Climate Fluctuations), Moscow–Leningrad: GONTI, 1939.

  20. PAGES 2k Consortium, 2017. doi 0.1038/sdata.2017.88

  21. Shapiro, A.I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M., Shapiro, A.V., and Nyeki, S., A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing, Astron. Astrophys., 2011, vol. 529, A67.

    Article  Google Scholar 

  22. Skakun, A.A. and Volobuev, D.M., Contribution of the solar constant variations to calculations of insolation for the Holocene period, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 7, pp. 902–905.

  23. Stevens, M.J. and North, G.R., Detection of the climate response to the solar cycle, J. Atmos. Sci., 1996, vol. 53, no. 18, pp. 2594–2608.

    Article  Google Scholar 

  24. Volobuev, D.M., Central Antarctic climate response to the solar cycle, Clim. Dyn., 2014, vol. 42, nos. 9–10, pp. 2469–2475.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported in part by the Russian Foundation for Basic Research, project nos. 16-02-00090 and 18-02-00583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Dergachev.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dergachev, V.A., Volobuev, D.M. Solar Radiation Change and Climatic Effects on Decennial–Centennial Scales. Geomagn. Aeron. 58, 1042–1049 (2018). https://doi.org/10.1134/S0016793218080042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793218080042

Navigation