Skip to main content
Log in

The Effect of the Betatron Mechanism on the Dynamics of Superthermal Electron Fluxes within Dipolizations in the Magnetotail

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The dynamics of high-energy electron fluxes (with energies over 40 keV) is analyzed in 13 events of magnetic field dipolization observed by the Cluster satellites in the near-tail of the Earth magnetosphere. In all of the events, the observed energetic electron fluxes are enhanced simultaneously with initial dipolization. Good correlation (correlation coefficient >0.6) is observed between the dynamics of the energetic electron fluxes with energies up to 90 keV and the BZ component of the magnetic field. Electron fluxes with higher energies display a decline of correlation with the magnetic field. The increase in electron fluxes with energies up to 90 keV during dipolization development is shown to be mainly due to the mechanism of betatron acceleration. The dynamics of electron fluxes with higher energies is poorly described by the betatron scenario and requires consideration of other, probably nonadiabatic, mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Angelopoulos, V., Baumjohann, W., Kennel, C.F., Coroniti, F.V., Kivelson, M.G., Pellat, R., Walker, R.J., Luhr, H., and Paschmann, G., Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., 1992, vol. 97, no. A4, pp. 4017–4039. doi 10.1029/91JA02701

    Article  Google Scholar 

  2. Apatenkov, S.V., Sergeev, V.A., Kubyshkina, M.V., et al., Multi-spacecraft observation of plasma dipolarization/injection in the inner magnetosphere, Ann. Geophys., 2007, vol. 25, pp. 801–814. doi 10.5194/angeo-25-801-2007

    Article  Google Scholar 

  3. Asano, Y., Shinohara, I., Retinò, A., et al., Electron acceleration signatures in the magnetotail associated with substorms, J. Geophys. Res., 2010, vol. 115, A05215. doi 10.1029/2009JA014587

    Article  Google Scholar 

  4. Ashour-Abdalla, M., El-Alaoui, M., Goldstein, M.L., Zhou, M., Schriver, D., Richard, R., Walker, R., Kivelson, M.G., and Hwang, K., Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events, Nat. Phys., 2011, vol. 7, pp. 360–365. doi 10.1038/nphys1903

    Article  Google Scholar 

  5. Balogh A., Carr, C. M., Acuña, M.H., et al., The Cluster Magnetic Field Investigation: Overview of in-flight performance and initial results, Ann. Geophys., 2001, vol. 19, no. 10, pp. 1207–1217.

    Article  Google Scholar 

  6. Birn, J., Magnetotail equilibrium theory—the general 3-dimensional solution, J. Geophys. Res., 1987, vol. 92, no. A10, pp. 11101–11108.

    Article  Google Scholar 

  7. Birn, J. and Hesse, M., The substorm current wedge in MHD simulations, J. Geophys. Res., 2013, vol. 118, no. A6, pp. 3364–3376. doi 10.1002/jgra50187

    Article  Google Scholar 

  8. Birn, J., Nakamura, R., Panov, E.V., and Hesse, M., Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection, J. Geophys. Res., 2011, vol. 116, A01210. doi 10.1029/2010JA016083

    Article  Google Scholar 

  9. Birn, J., Artemyev, A.V., Baker, D.N., Echim, M., Hoshino, M., and Zelenyi, L.M., Particle acceleration in the magnetotail and aurora, Space Sci. Rev., 2012, vol. 173, pp. 49–102. doi 10.1007/s11214-012-9874-4

    Article  Google Scholar 

  10. Birn, J., Hesse, M., Nakamura, R., and Zaharia, S., Particle acceleration in dipolarization events, J. Geophys. Res., 2013, vol. 118, no. 5, pp. 1960–1971. doi 10.1002/jgra.50132

    Article  Google Scholar 

  11. Deng, X., Ashour-Abdalla, M., Zhou, M., Walker, R., El-Alaoui, M., Angelopoulos, V., Ergun, R.E., and Schriver, D., Wave and particle characteristics of earthward injections associated with dipolarization fronts, J. Geophys. Res., 2010, vol. 115, A09225. doi 10.1029/2009JA015107

    Article  Google Scholar 

  12. Eastwood, J.P., Goldman, M.V., Hietala, H., Newman, D.L., Mistry, R., and Lapenta, G., Ion reflection and acceleration near magnetotail dipolarization fronts associated with magnetic reconnection, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 511–525. doi 10.1002/2014JA020516

    Article  Google Scholar 

  13. Fu, H.S., Khotyaintsev, Y.V., Andre, M., and Vaivads, A., Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts, Geophys. Res. Lett., 2011, vol. 38, L16104. doi 10.1029/2011GL048528

    Google Scholar 

  14. Fu, H.S., Cao, J.B., Cully, C.M., et al., Whistler-mode waves inside flux pileup region: Structured or unstructured?, J. Geophys. Res.: Space Phys., 2014, vol. 119, pp. 9089–9100. doi 10.1002/2014JA020204

    Article  Google Scholar 

  15. Gabrielse, C., Angelopoulos, V., Runov, A., and Turner, D.L., Statistical characteristics of particles injections throughout the equatorial magnetotail, J. Geophys. Res., 2014, vol. 119, pp. 2512–2535. doi 10.1002/2013JA019638

    Article  Google Scholar 

  16. Grigorenko, E.E., Kronberg, E.A., Daly, P.W., Ganushkina, N.Yu., Lavraud, B., Sauvaud, J.-A., and Zelenyi, L.M., Origin of low proton-to-electron temperature ratio in the Earth’s plasma sheet, J. Geophys. Res.: Space Phys., 2016, vol. 121. doi 10.1002/2016JA022874

  17. Grigorenko, E.E., Kronberg, E.A., and Daly, P.W., Heating and acceleration of charged particles during magnetic dipolarizations, Cosmic Res., 2017, vol. 55, no. 1, pp. 57–66.

    Article  Google Scholar 

  18. Grigorenko, E.E., Dubyagin, S., Malykhin, A.Yu., Khotyaintsev, Yu.V., Kronberg, E.A., Lavraud, B., and Ganushkina, N.Yu., Intense current structures observed at electron kinetic scales in the near-Earth magnetotail during dipolarization and substorm current wedge formation, Geophys. Res. Lett., 2018, vol. 45. https://doi.org/10.1002/2017GL076303.

  19. Hwang, K.J., Goldstein, M.L., Lee, E., and Pickett, J.S., Cluster observations of multiple dipolarization fronts, J. Geophys. Res., 2011, vol. 116, A00I32. doi 10.1029/2010JA015742

    Article  Google Scholar 

  20. Imada, S., Nakamura, R., Daly, P.W., Hoshino, M., Baumjohann, W., Muhlbachler, S., Balogh, A., and Reme, H., Energetic electron acceleration in the downstream reconnection outflow region, J. Geophys. Res., 2007, vol. 112, A03202. doi 10.1029/2006JA011847

    Article  Google Scholar 

  21. Khotyaintsev, Y.V., Cully, C.M., Vaivads, A., André, M., and Owen, C.J., Plasma jet braking: Energy dissipation and nonadiabatic electrons, Phys. Rev. Lett., 2011, vol. 106, id 165001. doi 10.1103/PhysRevLett.106.165001

  22. Kronberg, E.A. and Daly, P.W., Spectral analysis for wide energy channels, Geosci. Instrum. Methods Data Syst. Discuss., 2013, vol. 3, no. 2, pp. 533–546. doi 10.5194/gi-2-257-2013

    Article  Google Scholar 

  23. Le Contel, O., Roux, A., Jacquey, C., et al., Quasi-parallel whistler mode waves observed by THEMIS during near-Earth dipolarizations, Ann. Geophys., 2009, vol. 27, pp. 2259–2275.

    Article  Google Scholar 

  24. McPherron, R.L., Russell, C.T., and Aubry, M.A., Satellite studies of magnetospheric substorms on August 15, 1968. 9. Phenomenological model for substorms, J. Geophys. Res., 1973, vol. 78, no. 16, pp. 3131–3149.

    Article  Google Scholar 

  25. Nakamura, R., Baumjohann, W., Klecker, B., et al., Motion of the dipolarization front during a flow burst event observed by Cluster, Geophys. Res. Lett., 2002, vol. 29, no. 20, 1942. doi 10.1029/2002GL015763

    Google Scholar 

  26. Nakamura, R., Retinó, A., Baumjohann, W., Volwerk, M., Erkaev, B.K.N., Lucek, E.A., Dandouras, I., André, M., and Khotyaintsev, Y., Evolution of dipolarization in the near-Earth current sheet induced by earthward rapid flux transport, Ann. Geophys., 2009, vol. 27, pp. 1743–1754. doi 10.5194/angeo-27-1743-2009

    Article  Google Scholar 

  27. Øieroset, M., Lin, R.P., Phan, T.D., Larson, DE., and Bale, S.D., Evidence for electron acceleration up to 300 keV in the magnetic reconnection diffusion region in the Earth’s magnetotail, Phys. Rev. Lett., 2002, vol. 89, 195001. doi 10.1103/PhysRevLett.89.195001

    Article  Google Scholar 

  28. Pan, Q., Ashour-Abdalla, M., El-Alaoui, M., Walker, R.J., and Goldstein, M.L., Adiabatic acceleration of suprathermal electrons associated with dipolarization fronts, J. Geophys. Res., 2012, vol. 117, A12224. doi 10.1029/2012JA018156

    Google Scholar 

  29. Panov, E.V., Artemyev, A.V., Baumjohann, W., Nakamura, R., and Angelopoulos, V., Transient electron precipitation during oscillatory BBF braking: THEMIS observations and theoretical estimates, J. Geophys. Res., 2013, vol. 118, pp. 3065–3076. doi 10.1002/jgra.50203

    Article  Google Scholar 

  30. Rème, H., Aoustin, C., Bosqued, J.M., et al., First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment, Ann. Geophys., 2001, vol. 19, pp. 1303–1354. https://doi.org/10.5194/angeo-19-1303-2001.

  31. Runov, A., Angelopoulos, V., Sitnov, M.I., Sergeev, V.A., Bonnell, J., McFadden, J.P., Larson, D., Glassmeier, K.-H., and Auster, U., THEMIS observations of an earthward-propagating dipolarization front, Geophys. Res. Lett., 2009, vol. 36, L14106. doi 10.1029/2009GL038980

    Article  Google Scholar 

  32. Runov, A., Angelopoulos, V., Zhou, X.-Z., Zhang, X.-J., Plaschke, S.U.F., and Bonnell, J., A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet, J. Geophys. Res., 2011, vol. 116, A05216. doi 10.1029/2010JA016316

    Article  Google Scholar 

  33. Runov, A., Sergeev, V.A., Angelopoulos, V., Glassmeier, K.-H., and Singer, H.J., Diamagnetic oscillations ahead of stopped dipolarization fronts, J. Geophys. Res., 2014, vol. 119, no. A3, pp. 1643–1657. doi 10.1002/2013JA019384

    Article  Google Scholar 

  34. Runov, A., Angelopoulos, V., Gabrielse, C., Liu, J., Turner, D.L., and Zhou, X.-Z., Average thermodynamic and spectral properties of plasma in and around dipolarizing flux bundles, J. Geophys. Res., 2015, vol. 120, pp. 4369–4383. doi 10.1002/2015JA021166

    Article  Google Scholar 

  35. Schmid, D., Volwerk, M., Nakamura, R., Baumjohann, W., and Heyn, M., A statistical and event study of magnetotail dipolarization fronts, Ann. Geophys., 2011, vol. 29, pp. 1537–1547. doi 10.5194/angeo-29-1537-2011

    Article  Google Scholar 

  36. Sergeev, V.A., Angelopoulos, V., and Nakamura, R., Recent advances in understanding substorm dynamics, Geophys. Res. Lett., 2012, vol. 39, L05101, doi 10.1029/2012GL050859

    Article  Google Scholar 

  37. Shiokawa, K., Baumjohann, W., and Haerendel, G., Braking of high-speed flows in the near-Earth tail, Geophys. Res. Lett., 1997, vol. 24, no. 10, pp. 1179–1182.

    Article  Google Scholar 

  38. Stawarz, J.E., Ergun, R.E., and Goodrich, K.A., Generation of high-frequency electric field activity by turbulence in the Earth’s magnetotail, J. Geophys. Res., vol. 120, no. A3, pp. 1845–1866. doi 10.1002/2014JA020166

  39. Vilberg, H., Khotyaintsev, Yu.V., Vaivads, A., André, M., Fu, H.S., and Cornilleau-Wehrlin, N., Whistler mode waves at magnetotail dipolarization fronts, J. Geophys. Res., 2014, vol. 119, pp. 2605–2611. doi 10.1002/2014JA019892

    Article  Google Scholar 

  40. Wilken, B., Daly, P.W., Mall, U., et al., First results from the rapid imaging energetic particle spectrometer on board cluster, Ann. Geophys., 2001, vol. 19, pp. 1355–1366.

    Article  Google Scholar 

  41. Yao, Z.H., Pu, Z.Y., Fu, S.Y., et al., Mechanism of substorm current wedge formation: THEMIS observations, Geophys. Res. Lett., 2012, vol. 39, L13102. doi 10.1029/2012GL052055

    Article  Google Scholar 

  42. Zhang, X.-J. and Angelopoulos, V., On the relationship of electrostatic cyclotron harmonic emissions with electron injections and dipolarization fronts, J. Geophys. Res.: Space Phys., 2014, vol. 119, pp. 2536–2549. doi 10.1002/2013JA019540

    Article  Google Scholar 

  43. Zhou, M., Ashour-Abdalla, M., Deng, X., Schriver, D., El-Alaoui, M., and Pang, Y., THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the near-Earth magnetotail, Geophys. Res. Lett., 2009, vol. 36, L20107. doi 10.1029/2009GL040663

    Article  Google Scholar 

  44. Zhou, X., Angelopoulos, V., Sergeev, V.A., and Runov, A., Accelerated ions ahead of earthward propagating dipolarization fronts, J. Geophys. Res., 2010, vo. 115, A00I03. doi 10.1029/2010JA015481

    Google Scholar 

Download references

ACKNOWLEDGMENTS

E.A. Kronberg and P.W. Daly thank Deutsches Zentrum für Luft und Raumfahrt (DLR), project no. 50 OC 1602, for support of the RAPID device.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. E. Grigorenko or E. A. Kronberg.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malykhin, A.Y., Grigorenko, E.E., Kronberg, E.A. et al. The Effect of the Betatron Mechanism on the Dynamics of Superthermal Electron Fluxes within Dipolizations in the Magnetotail. Geomagn. Aeron. 58, 744–752 (2018). https://doi.org/10.1134/S0016793218060099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793218060099

Navigation