Skip to main content
Log in

Modeling the Effect of Mesospheric Internal Gravity Waves in the Thermosphere and Ionosphere During the 2009 Sudden Stratospheric Warming

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of numerical experiments on the modeling of thermospheric and ionospheric disturbances under conditions of sudden stratospheric warming are presented to study the possible mechanisms of such disturbances. Local disturbances caused by a planetary wave with zonal wave number s = 1 and internal gravity waves (IGWs) propagating from the disturbed region in the stratosphere are taken into account as sources of disturbances. It is shown that the inclusion of an additional source of thermospheric disturbances caused by mesospheric variations of atmospheric parameters with IGW periods over the region of sudden stratospheric warming leads to significant changes in the parameters of the thermosphere and ionosphere, including a change in the global structure of the distributions of the gas components of the thermosphere and a shift in maximum concentrations of atomic oxygen to low latitudes of the Southern Hemisphere; there is an increase in the mean values, the diurnal and semidiurnal variations of the ion concentration in the F region of the ionosphere. These features of changes in the parameters of the thermosphere and ionosphere occurred with insignificant disturbances of tidal variations in the thermosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bessarab, F.S., Korenkov, Y.N., Klimenko, M.V., Klimenko, V.V., Karpov, I.V., Ratovsky, K.G., and Chernigovskaya, M.A., Modeling the effect of sudden stratospheric warming within the thermosphere–ionosphere system, J. Atmos. Sol.-Terr. Phys., 2012, vol. 90–91, pp. 77–85.

    Article  Google Scholar 

  • Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Ionospheric Physics), Moscow: Nauka, 1988.

    Google Scholar 

  • Chau, J.L., Goncharenko, L.P., Fejer, B.G., and Liu, H.L., Equatorial and low latitude ionospheric effects during sudden stratospheric warming events ionospheric effects during SSW events, Space Sci. Rev., 2011, vol. 168, nos. 1–4, pp. 385–417.

    Google Scholar 

  • Fröhlich, K., Pogoreltsev, A., and Jacobi, Ch., Numerical simulation of tides, Rossby and Kelvin waves with the COMMA-LIM model, Adv. Space Res., 2003, vol. 32, no. 5, pp. 863–868.

    Article  Google Scholar 

  • Fuller-Rowell, T., Wu, F., Akmaev, R., Fang, T.-W., and Araujo-Pradere, E., A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics, J. Geophys. Res., 2010, vol. 115, A00G08.

    Article  Google Scholar 

  • Fuller-Rowell, T., Wang, H., Akmaev, R., Wu, F., Fang, T.-W., Iredell, M., and Richmond, A.D., Forecasting the dynamic and electrodynamic response to the January 2009 sudden stratospheric warming, Geophys. Res. Lett., 2011, vol. 38, L13102.

    Google Scholar 

  • Goncharenko, L.P., Coster, A.J., Chau, J.L., and Vallandares, C.E., Impact of sudden stratospheric warming on equatorial ionization anomaly, J. Geophys. Res., 2010a, vol. 115, A00G07.

    Article  Google Scholar 

  • Goncharenko, L.P., Chau, J.L., Liu, H.-L., and Coster, A.J., Unexpected connection between the stratosphere and ionosphere, Geophys. Res. Lett., 2010b, vol. 37, L10101.

    Article  Google Scholar 

  • Hagan, M.E. and Forbes, J.M., Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 2002, vol. 107, no. D24, pp. AAC 10-1-ILS 9–22.

    Google Scholar 

  • Hagan, M.E. and Forbes, J.M., Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 2003, vol. 108, no. A2.

    Google Scholar 

  • Hickey, M.P., Schubert, G., and Walterscheid, R.L., Acoustic wave heating of the thermosphere, J. Geophys. Res., 2001, vol. 106, pp. 21543–21548.

    Article  Google Scholar 

  • Hickey, M.P., Walterscheid, R.L., and Schubert, G., Gravity wave heating and cooling of the thermosphere: Roles of the sensible heat flux and viscous flux of kinetic energy, J. Geophys. Res., 2011, vol. 116, A12326.

    Article  Google Scholar 

  • Jin, H., Miyoshi, Y., Pancheva, D., Mukhtarov, P., Fujiwara, H., and Shinagawa, H., Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere–ionosphere model GAIA with COSMIC and TIMED/SABER observations, J. Geophys. Res., 2012, vol. 117, A10323.

    Article  Google Scholar 

  • Karpov, I.V., Vertical structure of tidal waves in the thermosphere, Geomagn. Aeron. (Engl. Transl.), 2003, vol. 43, no. 1, pp. 101–105.

    Google Scholar 

  • Karpov, I.V. and Kshevetsky, S.P., Formation of large-scale disturbances in the upper atmosphere caused by acoustic gravity wave sources on the Earth’s surface, Geomagn, Aeron. (Engl. Transl.), 2014, vol. 54, no. 4, pp. 513–522.

    Google Scholar 

  • Karpov, I.V., Bessarab, F.S., Korenkov, Yu.N., Klimenko, V.V., and Klimenko, M.V., Model study of the response of the thermosphere to perturbations of mesospheric tides and planetary waves during a sudden stratospheric warming, Russ. J. Phys. Chem. B, 2016a, vol. 10, no. 1, pp. 117–126.

    Article  Google Scholar 

  • Karpov, I.V., Kshevetsky, S.P., Borchevkina, O.P., Radievsky, A.V., and Karpov, A.I., Disturbances of the upper atmosphere and ionosphere caused by acoustic-gravity wave sources in the lower atmosphere, Russ. J. Phys. Chem. B, 2016b, vol. 10, no. 1, pp. 127–132.

    Article  Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., et al., Numerical modeling of ionospheric effects in the middle-and low-latitude F region during geomagnetic storm sequence of 9–14 September 2005, Radio Sci., 2011, vol. 46, RS0D03.

    Article  Google Scholar 

  • Korenkov, Y.N., Klimenko, V.V., Forster, M., Bessarab, F.S., and Surotkin, V.A., Calculated and observed ionospheric parameters for Magion-2 passage above EISCAT on July 31 1990, J. Geophys. Res., 1998, vol. 103, no. A7, pp. 14697–14710.

    Article  Google Scholar 

  • Kunitsyn, V.E., Suraev, S.N., and Akhmedov, R.R., Modeling of atmospheric propagation of acoustic gravity waves generated by different surface sources, Moscow Univ. Phys. Bull., 2007, vol. 6, no. 2, pp. 122–125.

    Article  Google Scholar 

  • Liu, H.-L. and Roble, R.G., A study of a self-generated stratospheric sudden warming and its mesosphericlower thermospheric impacts using the coupled TIMEGCM/ CCM3, J. Geophys. Res., 2002, vol. 107, no. D23, pp. ACL 15-1–ACL 15–18.

    Google Scholar 

  • Liu, X., Xu, J., Yue, J., and Vadas, S.L., Numerical modelling study of the momentum deposition of small amplitude gravity waves in the thermosphere, Ann. Geophys., 2013, vol. 31, no. 1, pp. 1–14.

    Article  Google Scholar 

  • Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushchenko, T.A., and Naumova, N.M., Global model of the thermosphere–ionosphere–protonosphere system, Pure Appl. Geophys., 1988, vol. 127, nos. 2–3, pp. 219–254.

    Article  Google Scholar 

  • Pancheva, D. and Mukhtarov, P., Strong evidence for the tidal control on the longitudinal structure of the ionospheric F-region, Geophys. Res. Lett., 2010, vol. 37, L14105.

    Article  Google Scholar 

  • Pancheva, D. and Mukhtarov, P., Stratospheric warmings: The atmosphere–ionosphere coupling paradigm, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, no. 13, pp. 1697–1702.

    Article  Google Scholar 

  • Pancheva, D., Miyoshi, Y., Mukhtarov, P., Jin, H., Shinagawa, H., and Fujiwara, H., Global response of the ionosphere to atmospheric tides forced from below: Comparison between cosmic measurements and simulations by atmosphere–ionosphere coupled model GAIA, J. Geophys. Res., 2012, vol. 117, A07319.

    Article  Google Scholar 

  • Pedatella, N.M., Fuller-Rowell, T., Wang, H., et al., The neutral dynamics during the 2009 sudden stratosphere warming simulated by different whole atmosphere models, J. Geophys. Res., 2014, vol. 119, no. 2, pp. 1306–1324.

    Article  Google Scholar 

  • Schubert, G., Hickey, M.P., and Walterscheid, R.L., Physical processes in acoustic wave heating of the thermosphere, J. Geophys. Res., 2005, vol. 110, D07106.

    Article  Google Scholar 

  • Sridharan, S., Sathishkumar, S., and Gurubaran, S., Variabilities of mesospheric tides and equatorial electrojet strength during major stratospheric warming events, Ann. Geophys., 2009, vol. 27, no. 11, pp. 4125–4130.

    Article  Google Scholar 

  • Thurairajah, B., Collins, R.L., Harvey, V.L., Lieberman, R.S., Gerding, M., Mizutani, K., and Livingston, J.M., Gravity wave activity in the Arctic stratosphere and mesosphere during the 2007–2008 and 2008–2009 stratospheric sudden warming events, J. Geophys. Res., 2010, vol. 115, D00N06.

    Article  Google Scholar 

  • Vadas, S.L. and Fritts, D.C., Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity, J. Geophys. Res., 2005, vol. 110, D15103.

    Article  Google Scholar 

  • Wang, L. and Alexander, M.J., Gravity wave activity during stratospheric sudden warmings in the 2007–2008 Northern Hemisphere winter, J. Geophys. Res., 2009, vol. 114, D18108.

    Article  Google Scholar 

  • Yamashita, C., Liu, H.-L., and Chu, X., Gravity wave variations during the 2009 stratospheric sudden warming as revealed by ECMWF-T799 and observations, Geophys. Res. Lett., 2010, vol. 37, L22806.

    Google Scholar 

  • Yiğit, E. and Medvedev, A.S., Role of gravity waves in vertical coupling during sudden stratospheric warmings, Geosci. Lett., 2016, vol. 3, no. 1, id 27.

    Google Scholar 

  • Yiğit, E., Aylward, A.D., and Medvedev, A.S., Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study, J. Geophys. Res., 2008, vol. 113, no. D19.

    Google Scholar 

  • Yiğit, E., Knížová, P.K., Georgieva, K., and Ward, W., A review of vertical coupling in the atmosphere–ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity, J. Atmos. Sol.-Terr. Phys., 2016, vol. 141, pp. 1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Karpov.

Additional information

Original Russian Text © I.V. Karpov, F.S. Bessarab, O.P. Borchevkina, K.A. Artemenko, A.I. Klopova, 2018, published in Geomagnetizm i Aeronomiya, 2018, Vol. 58, No. 4, pp. 526–539.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, I.V., Bessarab, F.S., Borchevkina, O.P. et al. Modeling the Effect of Mesospheric Internal Gravity Waves in the Thermosphere and Ionosphere During the 2009 Sudden Stratospheric Warming. Geomagn. Aeron. 58, 509–522 (2018). https://doi.org/10.1134/S0016793218040084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793218040084

Navigation