Geomagnetism and Aeronomy

, Volume 58, Issue 2, pp 214–222 | Cite as

Equatorial Plasma Bubbles: Effect of Thermospheric Winds Modulated by DE3 Tidal Waves

  • L. N. Sidorova
  • S. V. Filippov


A hypothesis about the effect of the tropospheric source on the longitudinal distributions of the equatorial plasma bubbles observed in the topside ionosphere was proposed earlier. It was supposed that this influence is transferred mainly by the thermospheric winds modulated by the DE3 tropospheric tidal waves. This conclusion was based on the discovered high degree correlation (R ≅ 0.79) between the variations of the longitudinal distribution of the plasma bubbles and the neutral atmospheric density. In this work, the hypothesis of the effect of the thermospheric tidal waves on the plasma bubbles at the stage of their generation is subjected to further verification. With this purpose, the longitudinal distributions of the frequency of the plasma bubble observations at the different ionospheric altitudes (~600 km, ROCSAT-1; ~1100 km, ISS-b) are analyzed; their principal similarity is revealed. Comparative analysis of these distributions with the longitudinal profile of the deviations of the zonal thermospheric wind (~400 km, CHAMP) modulated by the DE3 tidal wave is carried out; their considerable correlation (R ≅ 0.69) is revealed. We conclude that the longitudinal variations of the zonal wind associated with DE3 tidal waves can effect the longitudinal variations in the appearance frequency of the initial “seeding” perturbations, which further evolve into the plasma bubbles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggson, T.L., Maynard, N.C., Hanson, W.B., et al., Electric field observations of equatorial bubbles, J. Geophys. Res., 1992, vol. 97, no. A3, pp. 2997–3009. doi 10.1029/90JA02356CrossRefGoogle Scholar
  2. Fritts, D.C., Vadas, S.L., Riggin, D.M., et al., Gravity wave and tidal influences on equatorial spread f based on observations during the Spread F Experiment (SpreadFEx), Ann. Geophys., vol. 26, no. 11, pp. 3235–3252.Google Scholar
  3. Gentile, L.C., Burke, W.J., and Rich, F.J., A climatology of equatorial plasma bubbles from DMSP 1989–2004, Radio Sci., 2006, vol. 41, RS5S21. doi 10.1029/2005RS003340CrossRefGoogle Scholar
  4. Hagan, M.E., Maute, A., and Roble, R.G., Troposphere tidal effects on the middle and upper atmosphere, J. Geophys. Res., vol. 114, A10302. doi 10.1029/2008JA013637Google Scholar
  5. Häusler, K. and Lühr, H., Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP, Ann. Geophys., 2009, vol. 27, no. 7, pp. 2643–2652.CrossRefGoogle Scholar
  6. Häusler, K., Lühr, H., Rentz, S., et al., A statistical analysis of longitudinal dependence of upper thermospheric zonal winds at dip equator latitudes derived from CHAMP, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, no. 12, pp. 1419–1430. doi 10.1016/j.jastp.2007.04.004CrossRefGoogle Scholar
  7. Hysell, D.L. and Kudeki, E., Collisional shear instability in the equatorial F-region ionosphere, J. Geophys. Res., 2004, vol. 109, A11301.CrossRefGoogle Scholar
  8. Kil, H., Kwak, Y.-S., Lee, W.K., et al., Nonmigrating tidal signature in the distributions of equatorial plasma bubbles and prereversal enhancement, J. Geophys. Res., 2015, vol. 120, no. 4, pp. 3254–3262. doi 10.1002/2014JA020908CrossRefGoogle Scholar
  9. Kudeki, E. and Bhattacharyya, S., Postsunset vortex in equatorial F-region plasma drifts and implications for bottomside spread-F, J. Geophys. Res., 1999, vol. 104, no. 12, pp. 28163–28170.CrossRefGoogle Scholar
  10. Kudeki, E., Akgiray, A., Milla, M.A., et al., Equatorial spread-f initiation: Post-sunset vortex, thermospheric winds, gravity waves, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, nos. 17–18, pp. 2416–2427.CrossRefGoogle Scholar
  11. Liu, H., Lühr, H., Watanabe, S., et al., Zonal winds in the equatorial upper thermosphere: decomposing the solar flux, geomagnetic activity, and seasonal dependencies, J. Geophys. Res., 2006, vol. 111, A07307. doi 10.1029/2005JA011415CrossRefGoogle Scholar
  12. Liu, H., Yamamoto, M., and Lühr, H., Wave-4 pattern of the equatorial mass density anomaly: A thermospheric signature of tropical deep convection, Geophys. Res. Lett., 2009, vol. 36, L18104. doi 10.1029/2009GL039865CrossRefGoogle Scholar
  13. Lühr, H., Häusler, K., and Stolle, C., Longitudinal variation of F region electron density and thermosphere zonal wind caused by atmospheric tides, Geophys. Res. Lett., 2007, vol. 34, L16102. doi 10.1029/2007GL030639CrossRefGoogle Scholar
  14. McClure, J.P., Singh, S., Bamgboye, D.K., et al., Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding, J. Geophys. Res., 1998, vol. 103, no. A12, pp. 29119–19135.CrossRefGoogle Scholar
  15. Oberheide, J., Forbes, J., Häusler, K., et al., Tropospheric tides from 80–400 km: Propagation, inter-annual variability and solar cycle effects, J. Geophys. Res., 2009, vol. 114, D00105. doi 10.1029/2009JD012388CrossRefGoogle Scholar
  16. Oberheide, J., Forbes, J., Zhang, X., et al., Wave-driven variability in the ionosphere–thermosphere–mesosphere system from TIMED observations: What contributes to the “wave-4”?, J. Geophys. Res., 2011, vol. 116, A01306. doi 10.1029/2010JA015911Google Scholar
  17. Pancheva, D., Miyoshi, Y., Mukhtarov, P., et al., Global response of the ionosphere to atmosphere tides forced from below: Comparison between COSMIC measurements and simulations by atmosphere–ionosphere coupled model GAIA, J. Geophys. Res., 2012, vol. 117, A07319. doi 10.1029/2011JA017452CrossRefGoogle Scholar
  18. RRL, Summary Plots of Ionospheric Parameters Obtained from Ionosphere Sounding Satellite-B, Tokyo: Radio Res. Lab. Min. Posts Telecom., 1983, vols. 1–3.Google Scholar
  19. RRL, Summary Plots of Ionospheric Parameters Obtained from Ionosphere Sounding Satellite-B, Special Report, Tokyo: Radio Res. Lab. Min. Posts Telecom., 1985, vol. 4.Google Scholar
  20. Sidorova, L.N. and Filippov, S.V., Topside ionosphere He+ density depletions: Seasonal/longitudinal occurrence probability, J. Atmos. Sol.-Terr. Phys., 2012, vol. 86, pp. 83–91. doi 10.1016/j.jastp.2012.06.013CrossRefGoogle Scholar
  21. Sidorova, L.N. and Filippov, S.V., Longitudinal statistics of plasma bubbles observed as He+ density depletions at altitudes of the topside ionosphere, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 1, pp. 60–72.CrossRefGoogle Scholar
  22. Sidorova, L.N. and Filippov, S.V., Plasma bubbles in the topside ionosphere: Estimations of the survival possibilities, J. Atmos. Sol.-Terr. Phys., 2014, vol. 119, pp. 35–41. doi 10.1016/j.jastp.2014.06.013CrossRefGoogle Scholar
  23. Sidorova, L.N. and Filippov, S.V., Longitudinal statistics of plasma bubbles: Possible tropospheric influence, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 4, pp. 482–492.CrossRefGoogle Scholar
  24. Singh, S.F., Johnson, F.S., and Power, R.A., Gravity wave seeding of equatorial plasma bubbles, J. Geophys. Res., 1997, vol. 102, pp. 7399–7410.CrossRefGoogle Scholar
  25. Tsunoda, R.T., Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E-region Pedersen conductivity, J. Geophys. Res., 1985, vol. 90, no. A1, pp. 447–456. doi 10.1029/JA090iA01p00447CrossRefGoogle Scholar
  26. Tsunoda, R.T., On seeding equatorial spread F during solstices, Geophys. Res. Lett., 2010, vol. 37, no. 5, pp. 5–8. doi 10.1029/2010GL042576CrossRefGoogle Scholar
  27. Watanabe, S. and Kondo, T., Ionosphere–thermosphere coupling in the low-latitude region, in Aeronomy of the Earth’s Atmosphere and Ionosphere, Abdu. M. and Pancheva, D., Eds., Dordrecht: Springer, 2011, vol. 2, pp. 375–380. doi 10.1007/978-94-007-0926-1Google Scholar
  28. Woodman, R.F. and La Hoz, C., Radar observations of F-region equatorial irregularities, J. Geophys. Res., 1976, vol. 81, pp. 5447–5466.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)Moscow, TroitskRussia

Personalised recommendations