Geomagnetism and Aeronomy

, Volume 58, Issue 2, pp 245–251 | Cite as

Estimating the Characteristics of Traveling Ionospheric Disturbances from Vertical Incidence Ionograms within a Compound Parabolic Layer Model

  • O. A. Laryunin


The characteristic U-shaped traces (cusps) in ionograms are associated with the passage of traveling ionospheric disturbances (TIDs), which lead to horizontal electron density gradients in the ionosphere and, therefore, to off-angle reflections in radio sounding. A new form of representation is considered for daily ionospheric sounding data. A compound parabolic layer model is proposed, which allows analytical calculation of ray paths to speed up the “homing-in” of the rays. Changes in the shape of the trace in the ionogram due to varying the TID characteristics are examined. A discussion is given of the possibilities for estimating TID characteristics from digitized vertical sounding ionograms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adushkin, V.V., Gavrilov, B.G., Gorelyi, K.I., Rybnov, Yu.S., and Kharlamov, V.A., Geophysical effects of the March 29, 2006, solar eclipse, Dokl. Earth Sci., 2007, vol. 417, no. 2, pp. 1393–1397.CrossRefGoogle Scholar
  2. Afraimovich, E.L., Voeikov, S.V., Perevalova, N.P., Vodyannikov, V.V., Gordienko, G.I., Litvinov, Yu.G., and Yakovets, A.F., Ionospheric effects of the March 29, 2006, solar eclipse over Kazakhstan, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 4, pp. 461–469.CrossRefGoogle Scholar
  3. Akchurin, A.D., Yusupov, K.M., Sherstyukov, O.N., and Il’diryakov, V.R., Identification of fast and small-scale inhomogeneities in one-minute ionograms of the Tsiklon ionosonde, Geliogeofiz. Issled., 2013, no. 2, pp. 101–110.Google Scholar
  4. Davies, K., Ionospheric Radio Waves, Waltham, Mass: Blaisdell, 1969; Moscow: Mir, 1973.Google Scholar
  5. Eremenko, V.A., Krasheninnikov, I.V., and Cherkashin, Yu.N., Specific behavior of the radioemission wave field near the maximum usable frequency, Geomagn. Aeron. (Engl. Transl.), 2007, vol., no. 3, pp. 383–388.Google Scholar
  6. Haldoupis, C., Meek, C., Christakis, N., Pancheva, D., and Bourdillon, A., Ionogram height–time–intensity observations of descending sporadic E layers at midlatitude, J. Atmos. Sol.-Terr. Phys., 2006, vol. 68, nos. 3–5, pp. 539–557.CrossRefGoogle Scholar
  7. Kryukovskii, A.S., Kurkin, V.I., Laryunin, O.A., Lukin, D.S., Podlesnyi, A.V., Rastyagaev, D.V., and Chernyak, Ya.M., Numerical modeling of amplitude maps for the corrected IRI-2012 model with smooth ionospheric disturbances, J. Commun. Technol. Electron., 2016, vol. 61, no. 8, pp. 920–925.CrossRefGoogle Scholar
  8. Laryunin, O.A., Kurkin, V.I., Podlesnyi, A.V., Using data of two closely located ionosondes for the diagnostics of moving ionospheric disturbances, Elektromagn. Volny Elektron. Sist., 2014, vol. 19, no. 1, pp. 10–17.Google Scholar
  9. Lynn, K.J.W., Otsuka, Y., and Shiokawa, K., Ionogrambased range–time displays for observing relationships between ionosonde satellite traces, spread f and drifting optical plasma depletions, J. Atmos. Sol.-Terr. Phys., 2013, vol. 98, pp. 105–112.CrossRefGoogle Scholar
  10. Medvedev, A.V., Ratovsky, K.G., Tolstikov, M.V., and Kushnarev, D.S., Method for studying the spatial–temporal structure of wave-like disturbances in the ionosphere, Geomagn. Aeron. (Engl. Transl.), 2009, vol. 49, no. 6, pp. 775–785.CrossRefGoogle Scholar
  11. Munro, G.H. and Heisler, L.H., Cusp type anomalies in variable frequency ionospheric records, Aust. J. Phys., 1956, vol. 9, pp. 343–357.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Solar–Terrestrial Physics, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations