Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 2, pp 223–228 | Cite as

Possible Mechanism for Damping of Electrostatic Instability Related to Inhomogeneous Distribution of Energy Density in the Auroral Ionosphere

  • I. V. Golovchanskaya
  • B. V. Kozelov
  • A. A. Chernyshov
  • A. A. Ilyasov
  • M. M. Mogilevsky
Article
  • 14 Downloads

Abstract

Satellite observations show that the electrostatic instability, which is expected to occur in most cases due to an inhomogeneous energy density caused by a strongly inhomogeneous transverse electric field (shear of plasma convection velocity), occasionally does not develop inside nonlinear plasma structures in the auroral ionosphere, even though the velocity shear is sufficient for its excitation. In this paper, it is shown that the instability damping can be caused by out-of-phase variations of the electric field and field-aligned current acting in these structures. Therefore, the mismatch of sources of free energy required for the wave generation nearly nullifies their common effect.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chernyshov, A.A., Il’yasov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Influence of inhomogeneities of the plasma density and electric field on the generation of electrostatic noise in the auroral zone, Plasma Phys. Rep., 2015, vol. 41, no. 3, pp. 254–261.CrossRefGoogle Scholar
  2. Chernyshov, A.A., Il’yasov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., Kozelov, B.V., Features of wave excitation of the electrostatic ion cyclotron type in the auroral ionosphere, Cosmic Res., 2016, vol. 54, no. 1, pp. 52–60.CrossRefGoogle Scholar
  3. Drummond, W.E. and Rosenbluth, M.N., Anomalous diffusion arising from microinstabilities in a plasma, Phys. Fluids, 1962, vol. 5, pp. 1507–1513. doi 10.1063/1.1706559CrossRefGoogle Scholar
  4. Ganguli, G. and Palmadesso, P.J., Electrostatic ion instabilities in the presence of parallel currents and transverse electric fields, Geophys. Res. Lett., 1988, vol. 15, pp. 103–106. doi 10.1029/GL015i001p00103CrossRefGoogle Scholar
  5. Ganguli, G., Lee, Y.C., and Palmadesso, P.G., Electrostatic ion-cyclotron instability caused by a nonuniform electric field perpendicular to the external magnetic field, Phys. Fluids, 1985, vol. 28, pp. 761–763. doi 10.1063/1.865096CrossRefGoogle Scholar
  6. Ganguli, G., Lee, Y.C., and Palmadesso, P.G., Kinetic theory for electrostatic waves due to transverse velocity shears, Phys. Fluids, 1988, vol. 31, pp. 823–838. doi 10.1029/GL012i010p00643CrossRefGoogle Scholar
  7. Gavrishchaka, V., Koepke, M.E., and Ganguli, G., Dispersive properties of a magnetized plasma with a field-aligned drift and inhomogeneous transverse flow, Phys. Plasmas, 1996, vol. 3, pp. 3091–3106. doi 10.1063/1.871656CrossRefGoogle Scholar
  8. Golovchanskaya, I.V., Kozelov, B.V., Mingalev, O.V., Fedorenko, Y.V., and Melnik, M.N., Magnetic perturbations in the events of broadband ELF turbulence observed by FAST, Geophys. Res. Lett., 2011, vol. 38, no. 17. doi 10.1029/2011GL049003CrossRefGoogle Scholar
  9. Golovchanskaya, I.V., Kozelov, B.V., Mingalev, I.V., Melnik, M.N., and Lubchic, A.A., Evaluation of a spaceobserved electric field structure for the ability to destabilize inhomogeneous energy-density-driven waves, Ann. Geophys., 2014a, vol. 32, pp. 1–6. doi 10.5194/angeo-32-12014CrossRefGoogle Scholar
  10. Golovchanskaya, I.V., Kozelov, B.V., Chernyshov, A.A., Mogilevsky, M.M., and Ilyasov, A.A., Branches of electrostatic turbulence inside solitary plasma structures in the auroral ionosphere, Phys. Plasmas, 2014b, vol. 21, no. 8, 082903. doi 10.1063/1.4891668CrossRefGoogle Scholar
  11. Ilyasov, A.A., Chernyshov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Inhomogeneities of plasma density and electric field as sources of electrostatic turbulence in the auroral region, Phys. Plasmas, 2015, vol. 22, no. 3, 032906. doi 10.1063/1.4916125CrossRefGoogle Scholar
  12. Ilyasov, A.A., Chernyshov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Influences of shear in the ion parallel drift velocity and of inhomogeneous perpendicular electric field on generation of oblique ion acoustic waves, J. Geophys. Res., 2016, vol. 121, no. 3, pp. 2693–2703. doi 10.1002/2015JA022117CrossRefGoogle Scholar
  13. Kadomtsev, B.B, Mikhailovskii, A.B., and Timofeev, A.V., Negative-energy waves in dispersive media, Zh. Eksp. Teor. Fiz., 1964, vol. 47, pp. 2266–2269.Google Scholar
  14. Kindel, J.M. and Kennel, C.F., Topside current instabilities, J. Geophys. Res., 1971, vol. 76, pp. 3055–3078. doi 10.1029/JA076i013p03055CrossRefGoogle Scholar
  15. Kintner, P.M., Franz, J., Schuc, P., and Klatt, E., Interferometric coherency determination of wavelength or what are broadband ELF waves?, J. Geophys. Res., 2000, vol. 105, pp. 237–250. doi 10.1029/1999JA00323CrossRefGoogle Scholar
  16. Nezlin, M.V., Negative-energy waves and the anomalous Doppler effect, Phys.-Usp., 1976, vol. 19, no. 11, pp. 946–954.Google Scholar
  17. Onishchenko, O.G., Krasnoselskikh, V.G., and Pokhotelov, O.A., Drift-Alfvén vortices at the ion Larmor radius scale, Phys. Plasmas, 2008, vol. 11, no. 2, 022903. doi 10.1063/1.2844744CrossRefGoogle Scholar
  18. Pokhotelov, O.A., Onishchenko, O.G., Sagdeev, R.Z., and Treumann, R.A., Nonlinear dynamics of inertial Alfvén waves in the upper ionosphere: Parametric generation of electrostatic convective cells, J. Geophys. Res., 2003, vol. 108, no. A7. doi 10.1029/2003JA009888Google Scholar
  19. Reynolds, M.A. and Ganguli, G., Ion Bernstein waves driven by two transverse flow layers, Phys. Plasmas, 1998, vol. 5, pp. 2504–2512. doi 10.1063/1872934CrossRefGoogle Scholar
  20. Stasiewicz, K., Bellan, P., Chaston, C., et al., Small scale Alfvénic structure in the aurora, Space Sci. Rev., 2000, vol. 92, pp. 423–533.CrossRefGoogle Scholar
  21. Tam, S.W.Y., Chang, T., Kintner, P.M., and Klatt, E., Intermittency analyses on the SIERRA measurements of the electric field fluctuations in the auroral zone, Geophys. Res. Lett., 2005, vol. 32, no. 5. doi 10.1029/2004GL021445Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. V. Golovchanskaya
    • 1
  • B. V. Kozelov
    • 1
  • A. A. Chernyshov
    • 2
  • A. A. Ilyasov
    • 2
  • M. M. Mogilevsky
    • 2
  1. 1.Polar Geophysical InstituteApatityRussia
  2. 2.Space Research InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations