Geochemical Features of Magmas of the Largest Holocene Eruption of Khangar Volcano (Sredinny Range, Kamchatka): Melt Inclusion Evidence

Abstract

Melt inclusions were investigated in the minerals of dacite tephra of the largest Holocene eruption (7900 years) of Khangar volcano, Sredinny Range of Kamchatka. Melt compositions correspond to rhyolite (SiO2 = 70–77 wt %, Na2O+K2O = 6–7 wt %) with ~5 wt % H2O. The melts show a minor negative Nb anomaly and lesser HREE depletion (La/Yb is ~7.1) compared to those of Ichinsky Volcano, another active volcano of the Sredinny Range of Kamchatka. It was determined that different phenocryst assemblages were formed within temperature ranges of 750–785 and 830–870°C. Evidence for the assimilation of granite-gneiss basement by magmas of Khangar volcano are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. 1

    E. V. Asafov Yu. A. Kostitsyn, M. M. Pevzner, A. D. Babansky, and G. N. Pleshakova, “Isotope signatures of interaction of melts with basement in the Quaternary volcanic rocks of Kamchatka,” Proc. 11 th International Earth Science School (2013), pp. 12–17.

  2. 2

    G. P. Avdeiko, A. A. Palueva, and O. A. Khleborodova, “Geodynamic conditions of volcanism and magma formation in the Kurile–Kamchatka island-arc system,” Petrology 14 (3), 230–246 (2006).

    Article  Google Scholar 

  3. 3

    I. T. Bakumenko, N. A. Shugurova, E. N. Erlikh, and N. M. Popova, “Genesis of quartz from pumice of Khangar Volcano,” Dokl. Akad. Nauk SSSR 191 (3), 660–663 (1970).

    Google Scholar 

  4. 4

    L. I. Bazanova and M. M. Pevzner, “Khangar: one more active volcano in Kamchatka,” Dokl. Earth Sci. 377 (3), 307–309 (2001).

    Google Scholar 

  5. 5

    E. A. Belousova, W. L. Griffin, S. Y. O’Reily, and N. I. Fisher, “Igneous zircon: trace element composition as an indicator of source rock type,” Contrib. Mineral Petrol. 143, 602–622 (2002).

    Article  Google Scholar 

  6. 6

    I. T. Bindeman, V. L. Leonov, P. E. Izbekov, V. V. Ponomareva, K. E. Watts, N. Shipley, A. B. Perepelov, L. I. Bazanova, B. R. Jicha, B. S. Singer, A. K. Schmitt, M. V. Portnyagin, and C. H. Chen, “Large volume silicic volcanism in Kamchatka: Ar-Ar, U-Pb ages and geochemical characteristics of major pre-Holocene caldera-forming eruptions,” J. Volcanol. Geotherm. Res. 189, 57–80 (2010).

    Article  Google Scholar 

  7. 7

    O. A. Braitseva, V. V. Ponomareva, L. D. Sulerzhitsky, I. V. Melekestsev, and J. Bailey, “Holocene key–marker tephra layers in Kamchatka, Russia,” Quatern. Res. 47, 125–139 (1997).

    Article  Google Scholar 

  8. 8

    T. Churikova, F. Dorendorf, and G. Woerner “Sources and fluids in the mantle wedge below Kamchatka, evidence from across–arc geochemical variation,” J. Petrol. 42 (8), 1567–1593 (2001).

    Article  Google Scholar 

  9. 9

    E. Cook, M. Portnyagin, V. Ponomareva, L. Bazanova, A. Svensson, and D. Garbe–Schönberg, “First identification of cryptotephra from the Kamchatka Peninsula in a Greenland ice core: implications of a widespread marker deposit that links Greenland to the Pacific northwest,” Quatern. Sci. Rev. 181, 200–206 (2018). https://doi.org/10.1016/j.quascirev.2017.11.036

    Article  Google Scholar 

  10. 10

    L. V. Danyushevskiy, M. R. Carroll, and T. J. Falloon, “Origin of high-An plagioclase in Tonga high-Ca boninites – implication for plagioclase–melt equilibria at low p(H2O),” Can. Mineral. 32 (2), 313–326 (1997).

    Google Scholar 

  11. 11

    D. J. Henry, C. V. Guidotti, and J. A. Thomson, “The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms,” Am. Mineral. 90, 316–328 (2005).

    Article  Google Scholar 

  12. 12

    M. C. Humphreys, J. D. Blundy, and R. S. Sparks, “Shallow-level decompression crystallization and deep magma supply at Shiveluch Volcano,” Contrib. Mineral. Petrol. 155 (1), 45–61 (2008).

    Article  Google Scholar 

  13. 13

    P. E. Izbekov, J. C. Eichelberger, and B. V. Ivanov, “The 1996 Eruption of Karymskiy Volcano, Kamchatka: historical record of basaltic replenishment of an andesite reservoir,” J. Petrol. 45 (11), 2325–2345 (2004).

    Article  Google Scholar 

  14. 14

    K. P. Jochum, B. Stoll, K. Herwig, M. Willbold, and A. Hofmann, “MPI–DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios,” Geochem. Geophys. Geosyst. 7 (2), 1–44 (2006).

    Article  Google Scholar 

  15. 15

    F. Sh. Kutyev, M. M. Lebedev, and V. A. Maksimovskii, “Nature of the Khangar volcanotectonic structure,” Izv. Vyssh. Ucheb. Zaved., Geol. Razved., No. 7, 35–46 (1976).

  16. 16

    M. M. Pevzner, A. O. Volynets, V. A. Lebedev, A. D. Babansky, D. V. Kovalenko, Yu. A. Kostitsin, M. L. Tolstykh, and Yu. V. Kushcheva, “The beginning of volcanic activity within Sredinny metamorphic massif (Sredinny Range, Kamchatka),” Dokl. Earth Sci. 475 (5), 858–862 (2017).

    Article  Google Scholar 

  17. 17

    T. Yu. Marenina, “Khangar Volcano in the Sredinny Range of Kamchaka,” Tr. Mab. Volcanol. 17, 3–69 (1959).

    Google Scholar 

  18. 18

    I. V. Melekestseva, O. A. Braitseva, L. I. Bazanova, V. V. Ponomareva, and L. D. Sulerzhitskii, ““A special type of catastrophic explosive eruptions: Holocene Khangar subcaldera eruption, Khodutkinskii “maar”, Baranii Amphitheater (Kamchatka),” Volcanol. Seismol., No. 2, 3–24 (1996).

  19. 19

    W. P. Nash and H. R. Crecraft, “Partition coefficient for trace elements in silicic magmas,” Geochim. Cosmochim. Acta. 49, 2309–2322 (1985). Doi https://doi.org/10.1016/0016-7037(85)90231

    Article  Google Scholar 

  20. 20

    C. H. Nielsen and H. Sigurdsson, “Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses,” Am. Mineral. 66, 547–552 (1981).

    Google Scholar 

  21. 21

    Y. Panjasawatwong, L. V. Danushevskiy, A. J. Crawford, and K. L. Harris, “An experimental study of the effects of melt composition on plagioclase–melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase,” Contrib. Mineral. Petrol. 118 (4), 420–432 (1995).

    Article  Google Scholar 

  22. 22

    M. M. Pevzner, Holocene Volcanism of the Sredinny Range, Kamchatka (GEOS, Moscow, 2015) [in Russian].

    Google Scholar 

  23. 23

    V. M. Pevzner, M. A. Lebedev, A. O. Volynets, M. L. Tolstykh, Yu. A. Kostitsin, and A. D. Babansky, “Age of Ichinsky and Khangar stratovolcanoes (Sredinny Range, Kamchatka),” Dokl. Earth Sci. 489 (6), 1413–1416 (2019).

  24. 24

    V. V. Ponomareva, I. V. Melekestsev, L. I. Bazanova, I. N. Bindeman, V. L. Leonov, and L. D. Sulerzhitskii, “Volcanic catastrophes at Kamchatka in the Middle Pleistocene–Holocene,” Extreme Natural Phenomena and Catastrophes (IFZ RAS, Moscow, 2010), pp. 219–238 [in Russian].

    Google Scholar 

  25. 25

    V. Ponomareva, M. Portnyagin, and S. Davies, “Tephra without borders: Far-reaching clues into past explosive eruptions,” Front. Earth Sci. 3 (2015). https://doi.org/10.3389/feart.2015.00083

  26. 26

    M. V. Portnyagin, K. Hoernle, P. Y. Plechov, N. L. Mironov, and S. A. Khubunaya, “Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc,” Earth Planet. Sci. Lett. 255 (1–2), 53–69 (2007). https://doi.org/10.1016/j.epsl.2006.12.005

    Article  Google Scholar 

  27. 27

    M. V. Portnyagin, V. V. Ponomareva, E. A. Zelenin, L. I. Bazanova, M. M. Pevzner, A. A. Plechova, A. N. Rogozin, and D. Garbe–Shonberg, “TephraKam: Geochemical database of glass compositions in tephra and welded tuffs from the Kamchatka volcanic arc (NW Pacific),” Earth System Sci. Data (2020). https://doi.org/10.5294/essd-2019-202

  28. 28

    Yu. M. Puzankov, O. N. Volynets, and M. G. Patoka, “Geochemistry of eruption products of the Ichinsky and Khangar volcanoes (Kamchatka) in relation with genesis of acid magma,” Volcanol. Seismol. No. 6, 11–22 (1979).

    Google Scholar 

  29. 29

    P. C. Rickwood, “Boundary lines within petrologic diagrams which use oxides of major and minor elements,” Lithos 22, 247–264 (1989).

    Article  Google Scholar 

  30. 30

    F. Ridolfi, A. Renzulli, and M. Puerini, “Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes,” Contrib. Mineral. Petrol. 160, 45–66 (2010)

    Article  Google Scholar 

  31. 31

    T. V. Sisson and T. L. Grove, “Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism,” Contrib. Mineral. Petrol. 113 (2), 143–166 (1993).

    Article  Google Scholar 

  32. 32

    T. V. Sisson, “Hornblende–melt trace element partitioning measure by ion microprobe,” Chem. Geol. 117 (1–4), 331–334 (1994). https://doi.org/10.1016/0009-2541(94)90135-X

    Article  Google Scholar 

  33. 33

    A. V. Soloviev, M. V. Luchitskaya, O. B. Selyangin, and J. K. Hourigan, “Late Cretaceous granitoid magmatism in the Sredinnyi Range of Kamchatka: geochronology and composition,” Stratigraphy. Geol. Correlation 23 (1), 57–78 (2015).

    Article  Google Scholar 

  34. 34

    J. G. Spray, “Quantitative electron-microprobe analysis of alkali silicate glasses: a review and user guide,” Can. Mineral. 33, 323–332 (1995).

    Google Scholar 

  35. 35

    D. Stumbea, “A critical approach to Ti in the biotite geothermometer,” Univ. Al. I. Cuza, Iași, Geol. 16 (1), 95–105 (2010).

    Google Scholar 

  36. 36

    S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. London, Spec. Publ. 42, 313–345 (1989).

  37. 37

    M. L. Tolstykh, M. M. Pevzner, and A. D. Babansky, “Evidence for magmatic mixing and assimilation in the Holocene tephra of Khangar volcano, Sredinny Range, Kamchatka,” Proc. 23rd Annual Volcanologist’s Day Conference, Petropavlovsk-Kamchatskii, Russia, 2020 (Petropavlovsk-Kamchatskii, IVIS DVO RAS, 2020), pp. 60–63 [in Russian].

  38. 38

    M. L. Tolstykh, M. M. Pevzner, V. B. Naumov, A. D. Babanskii, and N. N. Kononkova, Types of parental melts of pyroclastic rocks of various structural-age complexes of the Shiveluch Volcanic Massif, Kamchatka: evidence from inclusions in minerals,” Petrology 23 (5), 480–518 (2015).

    Article  Google Scholar 

  39. 39

    M. L. Tolstykh, M. M. Pevzner, V. B. Naumov, and A. D. Babansky, “Characteristics of acid melts that produced the tephra of Pleistocene–Holocene eruptions of Ichinsky volcano, Kamchatka: Evidence from melt inclusions,” Geochem. Int. 57. (3), 243–265 (2019).

    Article  Google Scholar 

  40. 40

    A. O. Volynets, M. M. Pevzner, M. L. Tolstykh, and A. D. Babansky, Volcanism of the southern part of the Sredinny Range of Kamchatka in the Neogene–Quaternary,” Russ. Geol. Geophys. 59 (12), 1577–1591 (2018). https://doi.org/10.1016/j.rgg.2018.12.004

    Article  Google Scholar 

  41. 41

    A. O. Volynets, M. M. Pevzner, V. A. Lebedev, Yu. V. Kushcheva, Yu. V. Gol’tsman, Yu. A. Kostitsin, M. L. Tolstykh, and A. D. Babansky, “Stages of volcanic activity on the southeastern flank of the Sredinny Range (Kamchatka): age, geochemistry, and isotopic characteristics of volcanic rocks of the Akhtang and Kostina mountain massifs,” Russ. Geol. Geophys. 61 (7), 700–714 (2020).

    Google Scholar 

  42. 42

    A. Volynets, T. Churikova, G. Woerner, B. Gordeychik, and P. Layer, “Mafic Late Miocene–Quaternary volcanic rocks in the Kamchatka back arc region: implications for subduction geometry and slab history at the Pacific–Aleutian junction,” Contrib. Mineral. Petrol. 159 (5), 659–687 (2010).

    Article  Google Scholar 

  43. 43

    D. A. Wark and E. B. Watson “The TITANiQ: titanium-in-quartz thermometer,” Geochim. Cosmochim. Acta. Suppl. 68, A543 (2004).

    Article  Google Scholar 

  44. 44

    E. B. Watson, D. A. Wark, and J. B. Thomas, “Crystallization thermometers for zircon and rutile,” Contrib. Mineral. Petrol. 151, 413–433 (2006).

    Article  Google Scholar 

  45. 45

    State Geological Map of RF. 1 : 200 000, Sheet N–57–II (VSEGEI, St. Petersburg, 2006).

Download references

ACKNOWLEDGMENTS

We are grateful to M.V. Portnyagin and N.L. Mironov for constructive recommendations.

Funding

This work was made in the frameworks of the State Task of the GEOKHI and GIN RAS (project nos. 0137-2019-0014 and 0135-2019-0058), with partial financial support of the Russian Foundation for Basic Research (project no. 18-05-00224).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to M. L. Tolstykh or V. B. Naumov or M. M. Pevzner or A. D. Babansky or N. N. Kononkova.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tolstykh, M.L., Naumov, V.B., Pevzner, M.M. et al. Geochemical Features of Magmas of the Largest Holocene Eruption of Khangar Volcano (Sredinny Range, Kamchatka): Melt Inclusion Evidence. Geochem. Int. 59, 139–155 (2021). https://doi.org/10.1134/S0016702921020087

Download citation

Keywords:

  • Kamchatka
  • Sredinny Range
  • tephra
  • dacite
  • rhyolite
  • melt inclusion