Equilibrium–Kinetic Modeling an Acid Mine Drainage of Integrated Technological Sample from the Pavlovskoe Ore Deposit (Novaya Zemlya Archipelago, Southern Island). A Preliminary Estimation


We carried out equilibrium-kinetic modeling the interaction of the integrated technological sample from the Pavlovskoe ore deposit with atmospheric precipitates to estimate the potential environmental contamination during mining. Accumulation of major (Zn, Pb) and trace (Cu, Co, Cd, As, Hg, Se, Hg, Sb) ore elements in aqueous solution during summer period has been calculated. It has been shown that the aqueous solution after the interaction acquires sulfate–calcium composition and accumulates Zn, Sb, and Hg in concentrations exceeding the maximum permissible concentrations.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    Acid Base Accounting (ABA) Test Procedures. Ed. by Chris Mills.

  2. 2

    D. W. Blowes, C. J. Ptacek, J. L. Jambor, and C. G. Weisener, “The geochemistry of acid mine drainage,” Treatise on Geochem. 9, 150–204 (2005).

    Google Scholar 

  3. 3

    S. L. Brantley, “Reaction kinetics of primary rock–forming minerals under ambient conditions,” Treatise on Geochem. 5, 73–118 (2004).

  4. 4

    T. A. Gubina, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (St. Petersburg, 2000) [in Russian].

  5. 5

    H. C. Helgeson, T. H. Brown, A. Nigrini, and T. A. Jones, “Calculation of mass transfer in geochemical processes involving aqueous solutions,” Geochim. Cosmochim. Acta 34 (5), 569–592 (1970).

    Article  Google Scholar 

  6. 6

    Hygienic Standards GN–03. Maximum Permissible Concentrations (MPC) of Chemical Matters in Water of Water Objects of Domestic and Cultural–Social Water Use. Statement of April 30, 2003. Moscow, no. 79.

  7. 7

    J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, “SU-PCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0° to 1000°C,” Comp. Geosci. 18, 899–947 (1992).

    Article  Google Scholar 

  8. 8

    V. D. Kozyr’kov, A. V. Lavrentiev, and S. N. Shcherbakova, “Composition and technological properties of lead–zinc ores of the Pavlovskoe deposit,” 65 Anniversary of VNIIKHT. A Collection of Papers (OOO Vinipress, 2016), pp. 79–85 [in Russian].

    Google Scholar 

  9. 9

    O. A. Limantseva, B. N. Ryzhenko, and E. V. Cherkasova, “Prediction of the effects of acid mine drainage on variations in the hydrogeochemical environment at sulfide-bearing ore deposits,” Geochem. Int. 53 (10), 922–936 (2015).

    Article  Google Scholar 

  10. 10

    O. A. Limantseva, B. N. Ryzhenko, E. V. Cherkasova, “Acidic drainage at the Pavlovskoe ore deposit, Novaya Zemlya Archipelago,” Geochem. Int. 57 (5), 583–592 (2019).

    Article  Google Scholar 

  11. 11

    M. A. McKiblen and H. L. Barnes, “Oxidation of pyrite in low temperature acidic solutions; rate laws and surface texture,” Geochim. Cosmochim. Acta 50 (7), 1509–1520 (1986).

    Article  Google Scholar 

  12. 12

    F. J. Millero, S. Sotolongo and M. Izaguirre, “The oxidation kinetics of Fe(II) in seawater,” Geochim. Cosmochim. Acta 51, 793–801 (1987).

    Article  Google Scholar 

  13. 13

    M. V. Mironenko and M. Y. Zolotov, “Equilibrium-kinetic model of water–rock interaction,” Geochem. Int. 50 (1), 1–7 (2012).

    Article  Google Scholar 

  14. 14

    M. V. Mironenko, T. T. Melikhova, M. Yu. Zolotov, and N. N. Akinfiev, “GEOCHEQ_M – a complex for thermodynamic and kinetic modeling of geochemical processes in the water–rock–gas system. Version 2008,” Vestn. ONZ RAS (URL: http: // www.scgis.ru/ ru-ssian/cp1251/h_dgggms/1–2008/informbul_1_2008/ mineral_22.pdf).

  15. 15

    P. Papadopoulos and D. L. Rowell, “The reactions of cadmium with calcium carbonate surfaces,” J. Soil Sci. 39, 23–36 (1988).

    Article  Google Scholar 

  16. 16

    M. A. Williamson and J. D. Rimstidt, “Rate kinetics and electrochemical rate-determining step of aqueous pyrite oxidation,” Geochim. Cosmochim. Acta 58 (2), 5443–5454 (1994).

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to E. V. Cherkasova or M. V. Mironenko or E. S. Sidkina.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cherkasova, E.V., Mironenko, M.V. & Sidkina, E.S. Equilibrium–Kinetic Modeling an Acid Mine Drainage of Integrated Technological Sample from the Pavlovskoe Ore Deposit (Novaya Zemlya Archipelago, Southern Island). A Preliminary Estimation. Geochem. Int. 59, 191–198 (2021). https://doi.org/10.1134/S0016702921020038

Download citation


  • acid drainage
  • environment
  • equilibrium-kinetic modeling
  • sulfides