Petrogenesis and Tectonic Implications of Anorogenic Acid Plutonic Rocks of Southwestern Haryana of Northwestern Peninsular India

Abstract—

This paper discusses the petrological and geochemical characteristics of the acid plutonic rocks (mainly granites of different colors) exposed in Khanak and Devsar areas of Neoproterozoic Malani Igneous Suite (MIS) to understand their magmatic evolution processes, petrogenetic history and tectonic regimes. Petrographically, granites of both areas show porphyritic, hypidiomorphic, granophyric, perthitic and micro-granophyric textures. Geochemically, these acidic rocks having peraluminous nature are enriched in SiO2, Na2O + K2O, Fe/Mg, Rb, Zr, Y, Th, U, REE and depleted in MgO, CaO, Sr, P, Ti, Ni, Cr, V & Eu abundances, which have affinity with A-type granites in extensional environment. The enrichment of trace elements and negative anomalies of Sr, Eu, P & Eu in the multi-element spider diagrams suggest that the emplacement of these granites were controlled by fractional crystallization and crustal contamination of protolith magma. Elemental geochemistry also attests that they are of rare-metal bearing with high heat production (HHP) nature and represent a genetically related post-collisional A2-type granitic intrusions. Petrogenetic modeling (batch melt related) suggests that the early phase (grey and grayish green colored granites) might have been generated from a gabbroic source by partial melting (5%) leaving a residue with 25% alkali feldspar, 20% quartz, 35% plagioclase, 10% biotite, 8% hornblende, 1% orthopyroxene and 1% clinopyroxene whereas late phase (pink colored granites) might have been generated from a metavolcanic source by partial melting of 2% leaving a residue with 30% alkali feldspar, 15% quartz, 45% plagioclase, 2% biotite, 2% hornblende, 3% orthopyroxene and 3% clinopyroxene. Hence, the petrology and geochemistry of these acid plutonic rocks are consistent with their formation in a plume related rift-magmatic tectonic setting and exhibit complex post magmatic chemical variations.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

REFERENCES

  1. 1

    T. Ahmad et al. “Proterozoic mafic volcanism in the Aravalli–Delhi Orogen, Northwestern India: geochemistry and tectonic framework,” J. Geol. Soc. India 72, 93–111 (2008).

    Google Scholar 

  2. 2

    C. J. Allègre and J.F. Minster, “Quantitative models of trace element behavior in magmatic processes,” Earth Planet. Sci. Lett. 38, 1–25 (1978).

    Article  Google Scholar 

  3. 3

    J. L. Anderson, “Proterozoic anorogenic granite plutonism of North America,” Bull. Geol. Soc. Am. 161, 133–154 (1983).

    Google Scholar 

  4. 4

    A. Audétat et al., “Magmatic–hydrothermal evolution in a fractionating granite: a microchemical study of the Sn–W–F–mineralized Mole Granite (Australia),” Geochim. Cosmochim Acta 19, 3373–3393 (2000).

    Article  Google Scholar 

  5. 5

    B. Barbarin, “A review of the relationships between granitoid types, their origins and their geodynamic environments,” Lithos 46, 605–626 (1999).

    Article  Google Scholar 

  6. 6

    F. Barker et al., “The Pikes peak batholith, Colorado front range and a model for the origin of the gabbro–anorthosite–syenite–potassic granite suite,” Precambrian Res. 2, 97–160 (1975).

    Article  Google Scholar 

  7. 7

    R. A. Batchelor and P. Bowden, “Petrogenetic interpretation of granitoid rock series using multicationic parameters,” Chem. Geol. 48, 43–55 (1985).

    Article  Google Scholar 

  8. 8

    M. Beyth at al., “The Late Precambrian Timna igneous complex, Southern Israel: Evidence for comagmatic–type sanukitoid monzodiorite and alkali granite magma,” Lithos, 31 (3–4), 103–124(1994).

    Article  Google Scholar 

  9. 9

    S. K. Bhushan, “Malani volcanism in Western Rajasthan,” Indian Jour. Earth Sci. 12, 58–71(1985).

    Google Scholar 

  10. 10

    S. K. Bhushan, “Malani rhyolites: A review,” Gondwana Res. 3 (1), 65–77(2000).

    Article  Google Scholar 

  11. 11

    S. K. Bhushan and V.K., Chittora, “Late Proterozoic bimodal assemblage of Siwana subsidence structure, Western Rajasthan, India,” J. Geol. Soc. India 53, 433–453 (1999).

    Google Scholar 

  12. 12

    B. Bonin, “Peralkaline granites in Corsica: Some petrological and geochemical constraints,” Rendiconti Della Societa Italina Di Mineral. Petrol. 43 (2), 281–306 (1988).

    Google Scholar 

  13. 13

    B. Bonin, “A-type granites and related rocks: Evolution of a concept, problems and prospects,” Lithos 97, 1–29 (2007).

    Article  Google Scholar 

  14. 14

    S. E. Bryan et al., “Silicic volcanism; an undervalued component of large igneous provinces and volcanic rifted margins,” Volcanic Rift Margins, Ed. by M. A. Menzies, S. L. Klemperer, C. J. Ebinger, J. Baker, Geol. Soc. Am., Spec. Pap. 362, 97–118 (2002).

  15. 15

    X. F. Cao et al., “LA–ICP–MS zircon dating, geochemistry, petrogenesis and tectonic implications of the Dapingliang Neoproterozoic granites at Kuluketage block, NW China,” Precambrian Res. 186, 205–219 (2011).

    Article  Google Scholar 

  16. 16

    A. K. Chaudhary et al., “Present status of the geochronology of the Precambrian rocks of Rajasthan,” Tectonophys. 105, 131–140 (1984).

    Article  Google Scholar 

  17. 17

    Y. B Chen et al., “Precambrian basement age and characteristics of Southwestern Tianshan: zircon U Pb geochronology and Nd Sr isotopic compositions,” Acta Petrologica Sinica 16, 91–98 (2011).

    Google Scholar 

  18. 18

    D. B. Clarke, Granitoid Rocks. Topics in the Earth Sciences (Chapman and Hall, London, 1992), Vol. 7.

    Google Scholar 

  19. 19

    J. D. Clemens et al., “Origin of an A–type granite: experimental constraints,” Am. Mineral. 71, 317–324 (1986).

    Google Scholar 

  20. 20

    W. J. Collins et al., “Nature and origin of A–type granites with particular reference to Southeastern Australia,” Contrib. Mineral. Petrol. 80, 189–200 (1982).

  21. 21

    A. R. Crawford, “The Precambrian geochronology of Rajasthan and Bundelkhand, Northern India,” Can. J. Earth Sci. 7, 91–110 (1970).

    Article  Google Scholar 

  22. 22

    R. A. Creaser et al., “A–type granites revisited: Assessment of a residual–source modal,” Geology 19, 163–166 (1991).

    Article  Google Scholar 

  23. 23

    R. Dall’ Agnol et al., “An experimental study of a lower Proterozoic A–type granite from the eastern Amazonian cration, Brazil,” J. Petrol. 40, 1673–1698(1991).

    Article  Google Scholar 

  24. 24

    H. De La Roche et al., “A classification of volcanic and plutonic rocks using R1–R2 diagrams and major elements analysis–its relationship with current nomenclature,” Chem. Geol. 29, 183–210 (1980).

    Article  Google Scholar 

  25. 25

    G. N. Eby, “The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis,” Lithos 26, 115–134 (1990).

    Article  Google Scholar 

  26. 26

    G. N. Eby, “Chemical subdivision of A–type granitoids: petrogenesis and tectonic implications,” J. Geol. 20, 641–644 (1992).

    Article  Google Scholar 

  27. 27

    B. H. Flinter et al., “Selected geochemical mineralogical and petrological features of granitoids of the New England complex, Australia and their relation to Sn, W, Mo and Cu mineralization,” Econom. Geol. 67, 1241–1262 (1972).

    Article  Google Scholar 

  28. 28

    K. A. Foland and J. C. Allen, “Magma sources for Mesozoic anorogenic granites of the White Mountain magma series, New England, U.S.A,” Contrib. Mineral. Petrol. 109, 195–211 (1991).

    Article  Google Scholar 

  29. 29

    B. R. Frost et al., “A geochemical classification for granitic rocks,” J. Petrol. 42, 2033–2048(2001).

    Article  Google Scholar 

  30. 30

    C. D. Frost and B. R. Frost, “Reduced rapakivi-type granites: the tholeiite connection,” Geol. 25, 647–650 (1997).

    Article  Google Scholar 

  31. 31

    D. I. Groover and T. S. Mac Carthy, “Fractional crystallization and origin of tin deposits in granitoids,” Mineral Deposita 13, 11–26 (1978).

    Google Scholar 

  32. 32

    I. Haapala, “Magmatic and postmagmatic processes in tin mineralized granites: topaz-bearing leucogranite in the Eurajoki Rapakivi granite stock, Finland,” J. Petrol. 38 (12), 1645–1659 (1997).

    Article  Google Scholar 

  33. 33

    A. Harker, A Natural History of Igneous Rocks (Mac Millan, 1990).

    Google Scholar 

  34. 34

    P. Henderson, Inorganic Geochemistry (Pergamon, Oxford, 1982).

    Google Scholar 

  35. 35

    A. Q. Hu et al., “Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks,” Tectonophys. 328, 15–51(2001).

    Article  Google Scholar 

  36. 36

    C. S. Hutchison, “Granite emplacement and tectonic subdivision of Peninsular Malaysia,” Bull. Geol. Soc. Malaysia 9, 187–207 (1977).

    Article  Google Scholar 

  37. 37

    E. G. Imeokparia, “Rare metal mineralization in granitic rocks of the Tangalo anorogenic complex, Northern Nigeria,” Mineral Deposita 20, 181–188 (1985).

    Article  Google Scholar 

  38. 38

    R. R. E. Jacobson et al., “Ring complexes in the Younger Granite province of northern Nigeria,” Geol. Soc. Lond. Mem. 1, (1958).

  39. 39

    C. Y. Jiang et al., “Petrochemical characteristics, Nd, Sr, Pb isotopic compositions and petrogenesis of Permian Dike Swarm, Kuruktag Region, Xinjiang,” Acta Geologica Sinica 79, 823–833 (2005).

    Google Scholar 

  40. 40

    S. Jung and J. A. Pfander “Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry,” Euro. J. Mineral. 19 (6), 859–870 (2007).

    Article  Google Scholar 

  41. 41

    P. Kaur et al., “Chlorine-rich amphibole and biotite in the A–type granites, Rajasthan, NW India: Potential indicators of subsolidus fluid–rock interaction and metallogeny,” Geol. J. 54, 614–630 (2018).

    Article  Google Scholar 

  42. 42

    H. Keppler, “Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks,” Contrib. Mineral. Petrol. 114, 479–488 (1993).

    Article  Google Scholar 

  43. 43

    P. L. King et al., “Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia,” J. Petrol. 38, 371–391 (1997).

    Article  Google Scholar 

  44. 44

    N. Kochhar, “Indo–Gangetic basin, ring structure and continental drift,” Nature (London), 242, 141–142 (1973).

    Google Scholar 

  45. 45

    N. Kochhar, “Tusham Ring Complex, Bhiwani, India,” Proc. Indian Natural Sci. Academ. 49A, 459–490 (1983).

    Google Scholar 

  46. 46

    N. Kochhar, “Malani igneous suite: hot-spot magmatism and cratonization of the northern part of the Indian shiled,” Jour. Geol. Soc. India 25, 155–161 (1984).

    Google Scholar 

  47. 47

    N. Kochhar, “Mineralization associated with A-type Malani magmatism, Northwestern peninsular India,” Metallogeny Related to Tectonic of the Proterozoic Mobile Belts, Ed. by S. C. Sarkar (Oxford–IBH, New Delhi, 1992), pp. 209–224.

    Google Scholar 

  48. 48

    N. Kochhar, “Attributes and significance of the A-type Malani magmatism, Northwestern Peninsular Indian shield,” In: Crustal Evolution and Metallogeny in the Northwestern India, Ed. by M. Deb, (Narosa Publ., New Delhi, 2000), pp. 158–188.

    Google Scholar 

  49. 49

    N. Kochhar, “A type Malani magmatism: signatures of the Pan-African event in the Northwest Indian shield assembly of the Late Proterozoic Malani Supercontinent,” Spec. Publ. Geol. Surv. India 91, 112–126 (2008).

    Google Scholar 

  50. 50

    N. Kumar, “Lava Flow Stratigraphy and Geochemistry of the Magmatic Rocks in Nakora and Surrounding Areas, Distric Barmer, Western Rajasthan, India,” Unpublished Ph.D. Thesis (Kurukshetra University, Kurukshetra, 2009).

  51. 51

    N. Kochhar, “The Malani supercontinent,” In The Frontiers of Earth Science, Ed. by K. L. Shrivastava and P. K. Srivastava, (Scientific Publ., 2015), pp. 122–136.

    Google Scholar 

  52. 52

    N. Kumar and G. Vallinayagam, “Geochemistry and petrogenesis of Neoproterozoic A-type granites at Nakora in the Malani Igneous Suite, western Rajasthan, India,” Chinese J. Geochem. 31, 221–233 (2012).

    Article  Google Scholar 

  53. 53

    N. Kumar et al., “Petrology and geochemistry of acid volcano–plutonic rocks from Riwasa and Nigana areas of Neoproterozoic Malani Igneous Suite, Northwestern Peninsular India: an understanding approach to magmatic evolution,” Geochem. Int. 57, 645–667 (2019).

    Article  Google Scholar 

  54. 54

    L. Raimbault et al., “Comparative geochemistry of Ta-bearing granites,” in Transport and Deposition of Metals, Ed. by M. Pagel and J. L. Leroy (Balkema, Rotterdam, 1991), pp. 793–796.

    Google Scholar 

  55. 55

    B. Landenberger and W. J. Collins, “Derivation of A-type granites from dehydrated charnockitic lower crust: evidence from the Chaelundi complex Eastern Australia,” J. Petrol. 37, 145–170 (1996).

    Article  Google Scholar 

  56. 56

    S. L. R. Lenharo et al., “Petrology and textural evolution of granites associated with tin and rare metals mineralization at the Pitinga mine, Amazonas, Brazil,” Lithos 66, 37–61 (2003).

    Article  Google Scholar 

  57. 57

    A. A. Levinson, Introduction to Exploration Geochemistry (Applied Publishing Limited Wilmette, Illinois, 1974).

    Google Scholar 

  58. 58

    J. P. Liegeois and R. Black, “Alkaline magmatism subsequent to collision in the Pan–African belt of the Adrar des Iforas (Mali),” In: Alkaline Igneous Rocks, Ed. by J. G. Fitton and B. G. J. Upton, Spec. Publ., Geol. Soc. Lond. 30, 381–401 (1987).

  59. 59

    B. A. Litvinovsky et al., “Origin and evolution of overlapping calc–alkaline and alkaline magmas: the Late Palaeozoic post–collisional igneous province of Transbaikalia (Russia),” Lithos 125, 845–874 (2011).

    Article  Google Scholar 

  60. 60

    H. Q. Liu et al., “Origin of two types of rhyolites in the Tarim Large Igneous Province: Consequences of incubation and melting of a mantle plume,” Lithos 204, 59–72 (2014).

    Article  Google Scholar 

  61. 61

    M. C. Loiselle and D. I. Wones, “Characteristic and origin of anorogenic granites,” Geol. Soc. Am. 11, 468 pages (1979).

  62. 62

    J. Longhi et al., “Some Phase Equilibrium Constraints on the Origin of Proterozoic (Massif) Anorthosites and Related Rocks,” J. Petrol. 40, 339–362 (1999).

    Article  Google Scholar 

  63. 63

    T. S. Mac Carthy and R. A. Hasty, “Trace element distribution patterns and their relationship to the crystallization of granite melts,” Geochim. Cosmochim. Acta 40, 1351–1358 (1976).

    Article  Google Scholar 

  64. 64

    P. D. Maniar and P. M. Piccoli, “Tectonic discrimination of granitoids,” J. Geol. Soc. India 47, 611–619 (1989).

    Google Scholar 

  65. 65

    A.-K. M. Moghazi et al., “Geochemistry of the Late Neoproterozoic Hadb adh Dayheen ring complex, Central Arabian Shield: implications for the origin of rare-metal-bearing post-orogenic A-type granites,” J. Asian Earth Sci. 42, 1324–1340 (2011).

    Article  Google Scholar 

  66. 66

    A.-K. M. Moghazi et al., “Sources of rare-metal-bearing A–type granites from Jabel Sayed Complex, Northern Arabian Shield, Saudi Arabia,” J. Asian Earth Sci. 107, 244–258 (2015).

    Article  Google Scholar 

  67. 67

    A. Mushkin et al., “The petrogenesis of A-type magmas from the Amram Massif, southern Israel,” J. Petrol. 44, 815–832 (2003).

    Article  Google Scholar 

  68. 68

    M. A. Olade, “Geochemical characteristics of tin-bearing and tin barren granites, Northern Nigeria,” Econ. Geol. 75, 71–82 (1980).

    Article  Google Scholar 

  69. 69

    H. S. Pareek, “Petrochemistry and petrogenesis of the Malani Igneous Suite, India,” Bull. Geol. Soc. Am. 92, 206–273 (1981).

    Article  Google Scholar 

  70. 70

    A. E. Patino Douce, “Generation of metaluminous A-type granitoids by low–pressure melting of calc–alkaline granitoids,” J. Geol. 25, 743–746 (1997).

    Article  Google Scholar 

  71. 71

    J. A. Pearce et al., “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,” J. Petrol. 25, 956–983 (1984).

    Article  Google Scholar 

  72. 72

    A. Perccerillo and S.R. Taylor, “Geochemistry of some calk–alkaline volcanic rocks from the Kasamonu area, Northern Turkey,” Contrib. Mineral. Petrol. 58, 63–81 (1976).

    Article  Google Scholar 

  73. 73

    M. Qasem Jan et al., “Petrography of the Nagar Parkar igneous complex, Tharparkar, SE Sindh,” Geol. Bull. Peshwar Univ. 30, 227–249 (1997).

    Google Scholar 

  74. 74

    F. A. Robinson et al., “Geochemical and isotopic constraints on island arc, synorogenic, post-orogenic and anorogenic granitoids in the Arabian Shield, Saudi Arabia,” Lithos 220–223, 97–115 (2015).

    Article  Google Scholar 

  75. 75

    R. L. Rudnick and S. Gao, “Composition of the continental crust,” Treatise on Geochemistry, (Pergamon, Oxford, 2003), pp. 1–64 (2003).

    Google Scholar 

  76. 76

    A. K. Schmitt et al., “Zr–Nb–REE mineralisation in peralkaline granites from the Amis Complex, Brandberg (Namibia): Evidence for magmatic pre-enrichment from melt inclusions,” Econ. Geol. 97, 399–413 (2002).

    Article  Google Scholar 

  77. 77

    R. Sharma, “High heat production (HHP) granites of Jhunjhunu area, Rajasthan, India,” Bull. Indian Geol. Ass. 27, 55–61 (1994).

    Google Scholar 

  78. 78

    R. Sharma and N. Kumar, “Petrology and Geochemistry of A-type granites from Khanak and Devsar Areas of Bhiwani District, Southwestern Haryana,” J. Geol. Soc. India 90, 138–146 (2017).

    Article  Google Scholar 

  79. 79

    R. Sharma et al., “Signatures of high heat production and mineralization associated with plutonic and volcanic acidic rocks from Tosham Ring Complex, Southwestern Haryana, India,” Himalayan Geol. 40 (2), 239 247 (2019).

  80. 80

    V. N. Sharma and J. Ratnakar, “Petrology of the Gabbro–Diorite–Syenite–Granite Complex of Chanduluru, Prakasam Alkaline Province, Andhra Pradesh, India,” J. Geol. Soc. India 55, 553–572 (2000).

    Google Scholar 

  81. 81

    A. K. Singh et al., “Anorogenic acid volcanic rocks in the Kundal area of the Malani Igneous Suite, Northwestern India: geochemical and petrogenetic studies,” J. Asian Earth Sci. 27, 544–557 (2006).

    Article  Google Scholar 

  82. 82

    A. K. Singh and G. Vallinayagam, “Geochemistry and petrogenesis of anorogenic basic volcanic–plutonic rocks of the Kundal area of Malani Igneous Suite, Western Rajasthan, India,” Proc. Indian Acad. Sci., Earth Planet. Sci. 113, 667–681 (2004).

    Google Scholar 

  83. 83

    A. K. Singh and G. Vallinayagam, “Radioactive element distribution and rare–metal mineralization in anorogenic acid volcano–plutonic rocks of the Neoproterozoic Malani Felsic Province, Western Peninsular India,” J. Geol. Soc. India 73, 837–853 (2009).

    Article  Google Scholar 

  84. 84

    L. G. Singh and G. Vallinayagam, “Petrological and geochemical constraints in the origin and associated mineralization of A-type granite of the Dhiran area, northwestern Peninsular India,” Geosci. 294, 66–80 (2012).

    Google Scholar 

  85. 85

    T. W. Sisson et al., “Voluminous granitic magmas from common basaltic source,” Contrib. Mineral. Petrol. 148, 635–661 (2005).

    Article  Google Scholar 

  86. 86

    K. P. Skjerlie and A. D. Johnston, “Fluid–absent melting behavior of an F-rich tonalitic gneiss at mid–crustal pressures: implications for the generation of anorogenic granites,” J. Petrol. 34, 785–815 (1993).

    Article  Google Scholar 

  87. 87

    R. J. Stern and D. Gottfried, “Petrogenesis of a Late Precambrian (576–600 Ma) bimodal suite in Northeast Africa,” Contrib. Mineral. Petrol. 92, 492–501 (1986).

    Article  Google Scholar 

  88. 88

    M. Stoney, “Trachytic pyroclastic from Agua de Volcano, Sao Miquel Azores: evolution of magma body over 4000 years,” Contrib. Mineral. Petrol. 12, 423–432 (1981).

    Google Scholar 

  89. 89

    S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes,” In: Magmatism in the Ocean Basin, Ed. by M. J. Norry, and A. D. Saunders, Spec. Publ., Geol. Soc. 42, 313–345 (1989).

  90. 90

    S. R. Taylor and S. M. McLennan, The Continental Crust: its Composition and Evolution (Blackwell Sci. Publ., Oxford, 1985).

    Google Scholar 

  91. 91

    S. P. Turner et al., “Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia,” Lithos 28, 151–179 (1992).

    Article  Google Scholar 

  92. 92

    G. Vallinayagam, “Nb, Zr, REE rich acid dyke rocks from the Piplun area, Siwana Ring Complex, Western Rajasthan, India,” In: Geological Evolution of Northwestern India, Ed. by B.S. Paliwal, (Scientific Publ. Jodhpur, 1999), pp. 94–102.

    Google Scholar 

  93. 93

    G. Vallinayagam, “Geochemistry and petrogenesis of basic rocks in the Siwana Ring Complex, Barmer district, Rajasthan, India,” Ind. Mineral. 35 (1), 121–133 (2001).

    Google Scholar 

  94. 94

    G. Vallinayagam, “Occurrence of zinc rich A-type granites in the Trans–Aravalli anorogenic ring complexes, Northwestern India,” In: Economic Mineralization, Ed. by K. L. Shrivastava (Scientific Publ. Jodhpur, 2009), pp. 205–209.

    Google Scholar 

  95. 95

    G. Vallinayagam and N. Kumar, “Volcanic vent in Nakora Ring Complex of Malani Igneous Suite, Northwestern India,” J. Geol. Soc. India, 70 (5), 881–883 (2007).

    Google Scholar 

  96. 96

    G. Vallinayagam and N. Kumar, “Flow stratigraphy of Nakora Ring Complex, Malani Igneous Suite, Rajasthan, NW Peninsular India,”. Spec. Publ. Geol. Surv. India 91, 127–135 (2008).

    Google Scholar 

  97. 97

    J. Vander Auwera et al., “Derivation of the 1.0–0.9 Ga ferro-potassic A-type granitoids of southern Norway by extreme differentiation from basic magmas,” Precambrian Res. 124, 107–148 (2003).

    Article  Google Scholar 

  98. 98

    P. H. Vidal et al., “Geochemical investigations of the Manaslu leucogranite (Himalaya, Nepal),” Geochim. Cosmochim. Acta 46, 407–419 (1982).

    Article  Google Scholar 

  99. 99

    E. B. Watson, “Zircon saturation in felsic liquids: Experimental results and applications to trace elements geochemistry,” Contrib. Mineral. Petrol. 70, 407–419 (1979).

    Article  Google Scholar 

  100. 100

    E. B. Watson and T. M. Harrison, “Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types,” Earth planet. Sci. Lett. 64 (2), 295–304 (1983).

    Article  Google Scholar 

  101. 101

    J. B. Whalen et al., “A-type granites: geochemical characteristics, discrimination and petrogenesis,” Contrib. Mineral. Petrol. 96, 407–419 (1987).

    Article  Google Scholar 

  102. 102

    F. Y. Wu et al., “A-type granites in northeastern China: age and geochemical constraints on their petrogenesis,” Chem. Geol. 187 (1–2), 143–173 (2002).

    Article  Google Scholar 

  103. 103

    Y. G. Xu et al., “Zircon U–Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume,” Geochim. Cosmochim. Acta 72, 3084–3104 (2008).

    Article  Google Scholar 

  104. 104

    C. L. Zhang et al., “Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: age, geochemistry, petrogenesis and tectonic implications,” J. Asian Earth Sci. 35, 167–179 (2009).

    Article  Google Scholar 

  105. 105

    C.L. Zhang et al., “An early Paleoproterozoic high–K intrusive complex in southwestern Tarim Block, NW China: age, geochemistry, and tectonic implications,” Gondwana Res. 12, 101–112 (2007b).

    Article  Google Scholar 

  106. 106

    C. L. Zhang et al., “Diverse Permian magmatism in the Tarim Block, NW China: genetically linked to the Permian Tarim mantle plume?,” Lithos 119, 537–552 (2010).

    Article  Google Scholar 

  107. 107

    C. L. Zhang et al., “Multiple phases of the Neoproterozoic igneous activity in Quruqtagh of the northeastern Tarim Block, NW China: Interaction between plate subduction and mantle plume?,” Precambrian Res. 222–223, 488–502 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Director, Wadia Institute of Himalayan Geology (WIHG), Dehradun for permission to carry out the whole rock geochemical and mineral chemical analytical work at WIHG. We are thankful to Prof. N Kochhar (Punjab University) for his constructive suggestions and encouragements. We are also thankful to the anonymous reviewers for their comments which greatly helped in improvement in the manuscript, and also to the editor for his efficient editorial handling.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Radhika Sharma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Radhika Sharma, Kumar, N., Kumar, N. et al. Petrogenesis and Tectonic Implications of Anorogenic Acid Plutonic Rocks of Southwestern Haryana of Northwestern Peninsular India. Geochem. Int. 59, 66–91 (2021). https://doi.org/10.1134/S0016702920120034

Download citation

Keywords:

  • A-type granite
  • Geochemistry
  • Anorogenic
  • Malani Igneous Suite
  • NW Peninsular India