Physicochemical Model of Silver Behavior in a Weathering Profile

Abstract—

A weathering profile of phyllite shales with an original Ag concentration of 10–5 wt % (the average Ag concentration in the Earth’s crust is 7 × 10–6 wt %) was numerically simulated with the SELECTOR program package. Under oxidizing conditions, Ag occurs in the solutions dominantly in the form of the \({\text{Ag}}_{{({\text{aq}}{\text{.}})}}^{ + }\) cation and a few percent of the anion , at a total Ag concentration of ×10–6.4 mol/L. Under reduced conditions, the dominant ion is \({\text{Ag}}_{{({\text{aq}}{\text{.}})}}^{0}\), whose concentration is 10–8.19 mol/L. The mineral form of Ag throughout the whole vertical section is native silver.

This is a preview of subscription content, log in to check access.

Fig. 1.

REFERENCES

  1. 1

    N. N. Akinfiev and A. V. Zotov, “Thermodynamic description aqueous species in the system Cu–Ag–Au–S–O–H at temperatures of 0–600°C and pressures of 1–3000 Bar,” Geochem. Int. 48(7), 714–720 (2010).

    Article  Google Scholar 

  2. 2

    A. G. Betekhtin, Mineralogy: A Textbook (KDU, Moscow, 2008) [in Russian]

    Google Scholar 

  3. 3

    M. V. Borisov and Yu. V. Shvarov, Thermodynamics of Geochemical Processes. A Textbook (MGU, Moscow, 1992) [in Russian].

    Google Scholar 

  4. 4

    V. A. Bronevoi, A. V. Zil’bermints, V. M. Lipin, and V. A. Tenyakov, “Average concentrations of chemical elements in bauxites,” Dokl. Akad. Nauk SSSR 270 (5), 1167–1170 (1983).

    Google Scholar 

  5. 5

    J. N. Butler, Ionic Equilibrium: a Mathematical Approach (Reading, Addison-Wesley, 1964).

    Google Scholar 

  6. 6

    K. V. Chudnenko, Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Softwares, and Applications (GEO, Novosibirsk, 2010) [in Russian].

    Google Scholar 

  7. 7

    J. Emsley, The Elements. Oxford Chemistry Guide (Oxford University Press, Oxford, 1991).

    Google Scholar 

  8. 8

    R. M. Garrels, and C. L. Christ, Solutions, Minerals, and Equilibria (W.H. Freeman, San Francisco, 1965).

    Google Scholar 

  9. 9

    A. A. Godovikov, Mineralogy (Nedra, Moscow, 1975) [in Russian].

    Google Scholar 

  10. 10

    I. K. Karpov, K. V. Chudnenko, V. A. Bychinskii, and S. A. Kashik, “Standard free energy of formation of the nitrate ion determined in the model of Lake Baikal water,” Dokl. Earth Sci. 346 (3), 129–131 (1996).

    Google Scholar 

  11. 11

    I. K. Karpov, Physicochemical Computer Modeling in Geochemistry (Nauka, Novosibirsk, 1981) [in Russian].

    Google Scholar 

  12. 12

    V. A. Kopeikin, “Physicochemical model of titanium behavior in weathering profiles,” Vestn. Inst. Geol. Komi Nauchn. Ts. Ur. Otd. Ross. Akad. Nauk, 10, 35–38 (2018).

    Google Scholar 

  13. 13

    V. A. Kopeikin, “Physicochemical model of tin behavior in weathering profiles,” Geochem. Int. 55(4), 389–392 (2017).

    Article  Google Scholar 

  14. 14

    V. A. Kopeikin, Physicochemical Model of Lateritic Process. Physicochemical Models in Geochemistry (Nauka, Novosibirsk, 1988), pp. 61–80 [in Russian].

    Google Scholar 

  15. 15

    Vl. K. Kozlov, “Role of carbonate complexes in hydrothermal transfer of silver: experimental data,” Geokhimiya, No. 10, 1432–1442 (1984).

  16. 16

    Vl. K. Kozlov, and I. L. Khodakovsky, “Experimental study of thermodynamic properties of atomic silver in aqueous solutions within temperature range of 25–280°C,” Geokhimiya, No. 6, 836–848 (1983).

  17. 17

    S. R. Krainov, B. N. Ryzhenko, and V. M. Shvets, Geochemisty of Groundwaters. Theoretical, Applied, and Ecological Aspects (TsentrLitNefteGaz, Moscow, 2012) [in Russian].

  18. 18

    W. M. Latimer, The Oxidation State of the Elements and their Potentials in Aqueous Solutions (Prentice-Hall, New York, 1952).

    Google Scholar 

  19. 19

    G. N. Lewis and M. Randall, Thermodynamics and the Free Energy of Chemical Substances (McGray–Hill Book Company, New York, 1923).

    Google Scholar 

  20. 20

    R. A. Lidin, L. L. Andreeva, and V. A. Molochko, Constants of Inorganic Matters: A Reference Book (Drofa, Moscow, 2006) [in Russian].

    Google Scholar 

  21. 21

    V. V. Likhachev, Rare-Metal Potential of the Weathering Crust of the Middle Timan (Komi NTS UrO RAN, Syktyvkar, 1993) [in Russian].

    Google Scholar 

  22. 22

    Yu. Yu. Lur’e, Handbook on Analytical Chemistry (Khimiya, Moscow, 1989) [in Russian].

    Google Scholar 

  23. 23

    I. V. Morozov, A. I. Boltalin, and E. V. Karpova, Redox Processes. Electron Library of the Chemical Faculty (MGU, Moscow, 2003) [in Russian].

    Google Scholar 

  24. 24

    G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovsky, Handbook in Thermodynamics (for Geologists) (Atomizdat, Moscow, 1971) [in Russian].

  25. 25

    B. B. Owen and S. R. Brinkley, “The elimination of liquid junction potentials. I. The solubility product of silver chloride from 5 to 45°, and related thermodynamic quantities,” Am. J. Sci. 60(9), 2233–2239 (1938).

    Google Scholar 

  26. 26

    B. B. Owen, “The elimination of liquid junction potentials. II. The standard electrode potential of silver from 5 to 45°,” Am. J. Sci. 60 (9), 2229–2233 (1938).

    Google Scholar 

  27. 27

    I. V. Pyatnitsky and V. V. Sukhan, Analytical Chemistry of Silver. Series: Analytical Chemistry of Elements (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  28. 28

    S. I. Sadovnikov, A. V. Chukin, A. A. Rempel’ and A. I. Gusev, “Polymorphic transformation in nanocrystalline silver sulfide,” Phys. Solid State 58 (1), 30–36 (2016).

    Article  Google Scholar 

  29. 29

    E. L. Shock and H. C. Helgeson “Calculation of the thermodynamic and transport properties of aqueous species in high pressures and temperatures. Correlation algorithms for ionic species and equation of state pedicthions to 5 kb and 1000°C,” Geochim. Cosmochim. Acta. 52 (2), 2009–2036 (1988).

    Article  Google Scholar 

  30. 30

    R. H. Smith and A. E. Martell, Critical Stability Constants (Plenum Press, New York, 1977).

    Google Scholar 

  31. 31

    S. R. Taylor, “Abundance of chemical elements in the continental crust: a new table,” Geochim. Cosmochim. Acta 28 (8), 1273–1285 (1964).

    Article  Google Scholar 

  32. 32

    Thermal Constants of Substances. A Reference Book, Ed. by V. P. Glushko (Nauka, Moscow, 1965–1979) [in Russian].

  33. 33

    D. R. Turner, M. Whitefield, and A. G. Dickson, “The equilibrium speciation of dissolved components in freshwater and seawater at 25°C and 1 atm pressure,” Geochim. Cosmochim. Acta. 45(6), 855–881 (1981).

    Article  Google Scholar 

  34. 34

    V. P. Vasil’ev, Thermodynamic Properties of Electrolyte Solutions. A Textbook (Vysshaya Shkola. Moscow, 1982) [in Russian].

    Google Scholar 

  35. 35

    D. Whitney and B. W. Evans, “Abbreviations for names of rock–forming minerals,” Am. Mineral. 95, 185–187 (2010).

    Article  Google Scholar 

  36. 36

    L. K. Yakhontova “Controlling role of acid–basic characteristics of minerals in supergenesis,” Dokl. Akad. Nauk SSSR 294 (6), 1448–1450 (1987).

    Google Scholar 

  37. 37

    L. K. Yakhontova and A. P. Grudev, Supergene Zone of Ore Deposits (MGU, Moscow, 1978) [in Russian].

    Google Scholar 

  38. 38

    A. A. Yaroshevsky, “Abundances of chemical elements in the Earth,s crust,” Geochem. Int. 44 (1), 48–55 (2006).

    Article  Google Scholar 

  39. 39

    A. V. Zotov, K. A. Levin, and V. A. Volchenkova, “Experimental study of stability of hydroxochloride silver complexes in hydrothermal solutions,” Geokhimiya, No. 8, 1124–1136 (1982).

    Google Scholar 

  40. 40

    A. V. Zotov, K. A. Levin, and Z. Yu. Kotova, “The existence of Ag0(sol) particle under hydrothermal conditions,” Geokhimiya, No. 6, 903–906 (1985).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Kopeikin.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kopeikin, V.A. Physicochemical Model of Silver Behavior in a Weathering Profile. Geochem. Int. 58, 746–752 (2020). https://doi.org/10.1134/S001670292006004X

Download citation

Keywords:

  • silver
  • \(\Delta G_{{f\left( {298} \right)}}^{^\circ }\) J/mol
  • \({\text{Ag}}_{{({\text{aq}})}}^{ + }\)
  • \({\text{Ag}}_{{({\text{aq}})}}^{0}\)
  • computer simulations
  • Selector program package
  • weathering profile