Geochemistry International

, Volume 57, Issue 6, pp 716–721 | Cite as

Natural Kaersutite: FTIR, Raman, Thermal, and Thermochemical Studies

  • L. P. Ogorodova
  • Yu. D. Gritsenko
  • M. F. Vigasina
  • L. V. MelchakovaEmail author


The paper reports original thermochemical data obtained on natural oxo-amphibole kaersutite Na0.4K0.3(Ca1.6Na0.4)(Mg2.9\({\text{Fe}}_{{0.8}}^{{2 + }}\)Al0.7Ti0.6\({\text{Fe}}_{{0.5}}^{{3 + }}\))[Si6.1Al1.9O22](OH)0.2O1.8 from alkaline basalt in Mongolia. The data were obtained using a Tian–Calvet microcalorimeter. The enthalpy of formation from elements Δf\(H_{{{\text{el}}}}^{{\text{0}}}\)(298.15 K) = –12102 ± 16 kJ/mol) was obtained by high-temperature melt solution calorimetry. The entropy, enthalpy, and Gibbs energy of formation of the end members of the isomorphic series kaersutite NaCa2Mg3TiAl[Si6Al2O22]O2–ferrikaersutite NaCa2Mg3TiFe3+[Si6Al2O22]O2 were estimated.


thermochemistry Calvet microcalorimetry the enthalpy of formation kaersutite ferrikaersutite 



The authors thank Prof. E.M. Spiridonov, Geological Faculty, Lomonosov Moscow State University) for providing a kaersutite sample for this study.


  1. 1.
    S. Ando E. Garzanti, “Raman spectroscopy in heavy-mineral studies,” Sediment Provenance Studies in Hydrocarbon Exploration and Production, Ed. by R. A. Scott, H. R. Smyth, A. C. Morton, and N. Richardson, Geol. Soc. London, Spec. Publ. 386, 395–412 (2014).Google Scholar
  2. 2.
    A. I. Apopei, N. Buzgar, and A. Buzatu, “Raman and infrared spectroscopy of kaersutite and certain common amphiboles,” An. Stiint. U. Al. I. Geol. 57 (2), 35–58 (2011).Google Scholar
  3. 3.
    O. A. Bogatikov and E. D. Andreeva, “On kaersutite from gabbro of Mt. Patyn (Kuznetsk Alatau),” Minerals from Mafic Rocks in Relation to Petrogenesis (Nauka. Moscow, 1970), pp. 64–60 [in Russian].Google Scholar
  4. 4.
    N. V. Chukanov, Infrared Spectra of Mineral Species: Extended Library (Springer-Verlag GmbH, Dordrecht–Heidelberg–New York–London, 2014).CrossRefGoogle Scholar
  5. 5.
    A. A. Colville and G. A. Novak, “Kaersutite megacrysts and associated crystal inclusion from the Cima volcanic fields, San Bernardino County, California,” Lithos 27, 107–114 (1991).CrossRefGoogle Scholar
  6. 6.
    N. O. Gopal, K. V. Narasimhulu, and J. L. Rao, “EPR, optical, infrared and Raman spectral studies of actinolite mineral,” Spectrochim. Acta A 60, 2441–2448 (2004).CrossRefGoogle Scholar
  7. 7.
    F. C. Hawthorne and H. D. Grundy, “The crystal chemistry of the amphiboles. II. Refinement of the crystal structure of oxy-kaersutite,” Mineral. Mag. 39, 390–400 (1973).CrossRefGoogle Scholar
  8. 8.
    F. C. Hawthorne, R. Oberti, G. E. Harlow, W. V. Maresch, R. F. Martin, J. C. Schumacher, M. D. Welch, “Nomenclature of the amphibole supergroup,” Am. Mineral. 97, 2031–2048 (2012).CrossRefGoogle Scholar
  9. 9.
    T. J. B. Holland, “Dependence of entropy on volume for silicate and oxide minerals: a review and a predictive model,” Am. Mineral. 74, 5–13 (1989).Google Scholar
  10. 10.
    K. Ishida, D. M. Jenkins, and F. C. Hawthorne, “Mid-IR bands of synthetic calcic amphiboles of tremolite–pargasite series and of natural calcic amphiboles,” Am. Mineral. 93 (7), 5–13 (2008).CrossRefGoogle Scholar
  11. 11.
    V. K. Karzhavin, “Amphiboles: thermodynamic properties,” Geokhimiya, No. 12, 1724–1731 (1991).Google Scholar
  12. 12.
    I. A. Kiseleva, “Thermodynamic properties and stability of pyrope,” Geokhimiya, No. 6, 845–854 (1976).Google Scholar
  13. 13.
    I. A. Kiseleva, and L. P. Ogorodova, Application of high-temperature solution calorimetry for determination of the enthalpies of formation of hydroxyl-bearing minerals with reference to talc and tremolite,” Geokhimiya, no. 12, 1745–1755 (1983).Google Scholar
  14. 14.
    I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical study of the CaO–MgO–SiO2 system,” Geokhimiya, No. 12, 1811–1825 (1979).Google Scholar
  15. 15.
    I. A. Kiseleva, A. Navrotsky, I. A. Belitsky, and B. A. Fursenko, “Thermochemical study of calcium zeolites–heulandite and stilbite,” Am. Mineral. 86, 448–455 (2001).CrossRefGoogle Scholar
  16. 16.
    P. Makreski, G. Jovanovski, and A. Gajović, “Minerals from Macedonia XVII. Vibrational spectra of some common appearing amphiboles,” Vib. Spectrosc. 40, 98–109 (2006).CrossRefGoogle Scholar
  17. 17.
    F. M. McCubbin, A. Smirnov, H. Nekvasil, J.Wang, E. Hauri, and D. H. Lindsley, “Hydrous magmatism on Mars: a source of water for the surface and subsurface during the Amazonian,” Earth Planet. Sci. Lett. 292, 132–138 (2010).CrossRefGoogle Scholar
  18. 18.
    T. Mikouchi and M. Miyamoto, “Micro Raman spectroscopy of amphiboles and pyroxenes in the martian meteorites Zagami and Lewis Cliff 88516,” Meteorit. Planet. Sci. 35, 155–159 (2000).CrossRefGoogle Scholar
  19. 19.
    M. E. Minitti, L. A. Leshin, M. D. Dyar, T. J. Ahrens, Y.Guan, and S.-N. Luo, “Assessment of shock effects on amphibole water contents and hydrogen isotope compositions: 2. Kaersutitic amphibole experiments,” Earth Planet. Sci. Lett. 266, 288–302 (2008).CrossRefGoogle Scholar
  20. 20.
    A. Navrotsky and W. J. Coons, “Thermochemistry of some pyroxenes and related compounds,” Geochim. Cosmochim. Acta 40, 1281–1295 (1976).CrossRefGoogle Scholar
  21. 21.
    L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical study of natural pollucite,” Thermochim. Acta 403, 251–256 (2003).CrossRefGoogle Scholar
  22. 22.
    L. P. Ogorodova, I. A. Kiseleva, M. F. Vigasina, L. V. Melchakova, I. A. Bryzgalov, and D. A. Ksenofontov, “Thermodynamic study of calcic amphiboles,” Geochem. Int. 55 (9), 814–821 (2017a).CrossRefGoogle Scholar
  23. 23.
    L. P. Ogorodova, I. A. Kiseleva, M. F. Vigasina, L. V. Mel’chakova, D. A. Ksenofontov, and I. A. Bryzgalov, “Thermochemical study Mg–Fe amphiboles,” Geochem. Int. 55 (7), 669–673 (2017b).CrossRefGoogle Scholar
  24. 24.
    L. P. Ogorodova, I. A. Kiseleva, M. F. Vigasina, Yu. D. Gritsenko, I. A. Bryzgalov, and L. V. Melchakova, “Thermochemical study of sodic and sodic–calcic amphiboles,” Geokhimiya (in press).Google Scholar
  25. 25.
    A. S. Osokin, “Kaersutite from contact-metasomatic rocks of the Kurga massif, Kola Peninsula,” Mineralogy and Geochemistry (LGU, Leningrad, 1968), vol. 3, pp. 21–26.Google Scholar
  26. 26.
    R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull. 2131, (1995)Google Scholar
  27. 27.
    R. A. Robie and J. W. Stout, “Heat capacity from 12 to 305 K and entropy of talc and tremolite,” J. Phys. Chem. 67, 2252–2256 (1963).CrossRefGoogle Scholar
  28. 28.
    V. V. Severov, L. O. Filippov, and I. V. Filippova, “Relationship between cation distribution with electrochemical and flotation properties of calcic amphiboles,” Int. J. Miner. Process. 147, 18–27 (2016).CrossRefGoogle Scholar
  29. 29.
    E. L. Walton, T. G. Sharp, and J. Hu, “Frictional melting processes and the generation of shock veins in terrestrial structures: Evidence from the Steen River impact structure, Alberta, Canada,” Geochim. Cosmochim. Acta 180, 256–270 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. P. Ogorodova
    • 1
  • Yu. D. Gritsenko
    • 1
  • M. F. Vigasina
    • 1
  • L. V. Melchakova
    • 1
    Email author
  1. 1.Geological Faculty, Moscow State UniversityMoscowRussia

Personalised recommendations