Skip to main content
Log in

Natural Kaersutite: FTIR, Raman, Thermal, and Thermochemical Studies

  • SHORT COMMUNICATIONS
  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper reports original thermochemical data obtained on natural oxo-amphibole kaersutite Na0.4K0.3(Ca1.6Na0.4)(Mg2.9\({\text{Fe}}_{{0.8}}^{{2 + }}\)Al0.7Ti0.6\({\text{Fe}}_{{0.5}}^{{3 + }}\))[Si6.1Al1.9O22](OH)0.2O1.8 from alkaline basalt in Mongolia. The data were obtained using a Tian–Calvet microcalorimeter. The enthalpy of formation from elements Δf\(H_{{{\text{el}}}}^{{\text{0}}}\)(298.15 K) = –12102 ± 16 kJ/mol) was obtained by high-temperature melt solution calorimetry. The entropy, enthalpy, and Gibbs energy of formation of the end members of the isomorphic series kaersutite NaCa2Mg3TiAl[Si6Al2O22]O2–ferrikaersutite NaCa2Mg3TiFe3+[Si6Al2O22]O2 were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Ando E. Garzanti, “Raman spectroscopy in heavy-mineral studies,” Sediment Provenance Studies in Hydrocarbon Exploration and Production, Ed. by R. A. Scott, H. R. Smyth, A. C. Morton, and N. Richardson, Geol. Soc. London, Spec. Publ. 386, 395–412 (2014).

  2. A. I. Apopei, N. Buzgar, and A. Buzatu, “Raman and infrared spectroscopy of kaersutite and certain common amphiboles,” An. Stiint. U. Al. I. Geol. 57 (2), 35–58 (2011).

    Google Scholar 

  3. O. A. Bogatikov and E. D. Andreeva, “On kaersutite from gabbro of Mt. Patyn (Kuznetsk Alatau),” Minerals from Mafic Rocks in Relation to Petrogenesis (Nauka. Moscow, 1970), pp. 64–60 [in Russian].

    Google Scholar 

  4. N. V. Chukanov, Infrared Spectra of Mineral Species: Extended Library (Springer-Verlag GmbH, Dordrecht–Heidelberg–New York–London, 2014).

    Book  Google Scholar 

  5. A. A. Colville and G. A. Novak, “Kaersutite megacrysts and associated crystal inclusion from the Cima volcanic fields, San Bernardino County, California,” Lithos 27, 107–114 (1991).

    Article  Google Scholar 

  6. N. O. Gopal, K. V. Narasimhulu, and J. L. Rao, “EPR, optical, infrared and Raman spectral studies of actinolite mineral,” Spectrochim. Acta A 60, 2441–2448 (2004).

    Article  Google Scholar 

  7. F. C. Hawthorne and H. D. Grundy, “The crystal chemistry of the amphiboles. II. Refinement of the crystal structure of oxy-kaersutite,” Mineral. Mag. 39, 390–400 (1973).

    Article  Google Scholar 

  8. F. C. Hawthorne, R. Oberti, G. E. Harlow, W. V. Maresch, R. F. Martin, J. C. Schumacher, M. D. Welch, “Nomenclature of the amphibole supergroup,” Am. Mineral. 97, 2031–2048 (2012).

    Article  Google Scholar 

  9. T. J. B. Holland, “Dependence of entropy on volume for silicate and oxide minerals: a review and a predictive model,” Am. Mineral. 74, 5–13 (1989).

    Google Scholar 

  10. K. Ishida, D. M. Jenkins, and F. C. Hawthorne, “Mid-IR bands of synthetic calcic amphiboles of tremolite–pargasite series and of natural calcic amphiboles,” Am. Mineral. 93 (7), 5–13 (2008).

    Article  Google Scholar 

  11. V. K. Karzhavin, “Amphiboles: thermodynamic properties,” Geokhimiya, No. 12, 1724–1731 (1991).

    Google Scholar 

  12. I. A. Kiseleva, “Thermodynamic properties and stability of pyrope,” Geokhimiya, No. 6, 845–854 (1976).

    Google Scholar 

  13. I. A. Kiseleva, and L. P. Ogorodova, Application of high-temperature solution calorimetry for determination of the enthalpies of formation of hydroxyl-bearing minerals with reference to talc and tremolite,” Geokhimiya, no. 12, 1745–1755 (1983).

  14. I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical study of the CaO–MgO–SiO2 system,” Geokhimiya, No. 12, 1811–1825 (1979).

    Google Scholar 

  15. I. A. Kiseleva, A. Navrotsky, I. A. Belitsky, and B. A. Fursenko, “Thermochemical study of calcium zeolites–heulandite and stilbite,” Am. Mineral. 86, 448–455 (2001).

    Article  Google Scholar 

  16. P. Makreski, G. Jovanovski, and A. Gajović, “Minerals from Macedonia XVII. Vibrational spectra of some common appearing amphiboles,” Vib. Spectrosc. 40, 98–109 (2006).

    Article  Google Scholar 

  17. F. M. McCubbin, A. Smirnov, H. Nekvasil, J.Wang, E. Hauri, and D. H. Lindsley, “Hydrous magmatism on Mars: a source of water for the surface and subsurface during the Amazonian,” Earth Planet. Sci. Lett. 292, 132–138 (2010).

    Article  Google Scholar 

  18. T. Mikouchi and M. Miyamoto, “Micro Raman spectroscopy of amphiboles and pyroxenes in the martian meteorites Zagami and Lewis Cliff 88516,” Meteorit. Planet. Sci. 35, 155–159 (2000).

    Article  Google Scholar 

  19. M. E. Minitti, L. A. Leshin, M. D. Dyar, T. J. Ahrens, Y.Guan, and S.-N. Luo, “Assessment of shock effects on amphibole water contents and hydrogen isotope compositions: 2. Kaersutitic amphibole experiments,” Earth Planet. Sci. Lett. 266, 288–302 (2008).

    Article  Google Scholar 

  20. A. Navrotsky and W. J. Coons, “Thermochemistry of some pyroxenes and related compounds,” Geochim. Cosmochim. Acta 40, 1281–1295 (1976).

    Article  Google Scholar 

  21. L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical study of natural pollucite,” Thermochim. Acta 403, 251–256 (2003).

    Article  Google Scholar 

  22. L. P. Ogorodova, I. A. Kiseleva, M. F. Vigasina, L. V. Melchakova, I. A. Bryzgalov, and D. A. Ksenofontov, “Thermodynamic study of calcic amphiboles,” Geochem. Int. 55 (9), 814–821 (2017a).

    Article  Google Scholar 

  23. L. P. Ogorodova, I. A. Kiseleva, M. F. Vigasina, L. V. Mel’chakova, D. A. Ksenofontov, and I. A. Bryzgalov, “Thermochemical study Mg–Fe amphiboles,” Geochem. Int. 55 (7), 669–673 (2017b).

    Article  Google Scholar 

  24. L. P. Ogorodova, I. A. Kiseleva, M. F. Vigasina, Yu. D. Gritsenko, I. A. Bryzgalov, and L. V. Melchakova, “Thermochemical study of sodic and sodic–calcic amphiboles,” Geokhimiya (in press).

  25. A. S. Osokin, “Kaersutite from contact-metasomatic rocks of the Kurga massif, Kola Peninsula,” Mineralogy and Geochemistry (LGU, Leningrad, 1968), vol. 3, pp. 21–26.

    Google Scholar 

  26. R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull. 2131, (1995)

  27. R. A. Robie and J. W. Stout, “Heat capacity from 12 to 305 K and entropy of talc and tremolite,” J. Phys. Chem. 67, 2252–2256 (1963).

    Article  Google Scholar 

  28. V. V. Severov, L. O. Filippov, and I. V. Filippova, “Relationship between cation distribution with electrochemical and flotation properties of calcic amphiboles,” Int. J. Miner. Process. 147, 18–27 (2016).

    Article  Google Scholar 

  29. E. L. Walton, T. G. Sharp, and J. Hu, “Frictional melting processes and the generation of shock veins in terrestrial structures: Evidence from the Steen River impact structure, Alberta, Canada,” Geochim. Cosmochim. Acta 180, 256–270 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. E.M. Spiridonov, Geological Faculty, Lomonosov Moscow State University) for providing a kaersutite sample for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Melchakova.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogorodova, L.P., Gritsenko, Y.D., Vigasina, M.F. et al. Natural Kaersutite: FTIR, Raman, Thermal, and Thermochemical Studies. Geochem. Int. 57, 716–721 (2019). https://doi.org/10.1134/S0016702919060089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919060089

Keywords:

Navigation