Advertisement

Geochemistry International

, Volume 57, Issue 6, pp 605–620 | Cite as

Effect of Thermal State on the Mantle Composition and Core Sizes of the Moon

  • O. L. KuskovEmail author
  • E. V. Kronrod
  • V. A. Kronrod
Article
  • 31 Downloads

Abstract

Based on the joint inversion of seismic and gravity data in combination with phase equilibrium calculations within the Na2O–TiO2–CaO–FeO–MgO–Al2O3–SiO2 system using the method of Gibbs free energy minimization, we estimated the influence of the thermal state on the model chemical composition of the lunar mantle and the size of the Fe–S lunar core. Models based on the Apollo seismic data and mass and moment of inertia estimates from the data of the GRAIL mission were used as boundary conditions. The solution of the inverse problem provided constraints on the chemical composition (major oxide abundances) and mineralogy of the three-layer mantle. It was shown that, independent of temperature distribution, the FeO contents (~11–14 wt %) and MG# values (80–83) of the upper, middle, and lower mantle of the Moon are approximately equal and strongly different from those of the bulk silicate Earth (BSE): FeO ~ 8% and MG# ~ 89. In contrast, the estimates of Al2O3 content in the mantle are sensitive to temperature distribution. The analysis of thermal state models with temperature differences of 100–200°C at different depths showed that the Al2O3 content increases from 1–5 wt % in the upper and middle mantle to 4–7 wt % in the lower mantle containing up to 20 wt % garnet. The lunar abundance of Al2O3 is ~(1.0–1.2) × BSE for “cold” models and may be as high as (1.3–1.7) × BSE for “hot” models. The abundance of SiO2 is less sensitive to temperature distribution and is 50–55 wt % in the upper mantle and 45–50 wt % in the lower mantle. Orthopyroxene rather than olivine is the dominant mineral of the upper mantle. Based on the modeling of Fe–S melt density at high P and T, the size of the lunar core was estimated. The radius of the Fe–S core having a mean density of 7.1 g/cm3 and a sulfur content of 3.5–6.0 wt % lies within the range 50–350 km with the most probable value of approximately 300 km and depends weakly on the thermal regime of the Moon. The results of modeling imply that the lunar mantle is chemically stratified and the compositions of the Earth and its satellite are significantly different.

Keywords:

Moon internal structure chemical composition temperature mantle core 

Notes

ACKNOWLEDGMENTS

We are grateful to E.M. Galimov for his continuing support of our investigations at the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, D.K. Belashchenko for stimulating discussion, and reviewers for helpful comments. This study was partly financially supported by the Russian Foundation for Basic Research, project no. 18-05-00225, and program no. 17 of the Presidium of the Russian Academy of Sciences.

REFERENCES

  1. 1.
    D. Antonangeli, G. Morard, N. C. Schmerr, T. Komabayashi, M. Krisch, G. Fiquet, and Y. Fei, “Toward a mineral physics reference model for the Moon’s core,” PNAS 112, 3916–3919 (2015).CrossRefGoogle Scholar
  2. 2.
    T. Arai and S. Maruyama, “Formation of anorthosite on the Moon through magma ocean fractional crystallization,” Geosci. Front. 8, 299–308 (2017).CrossRefGoogle Scholar
  3. 3.
    N. Bagdassarov, G. Solferino, G. J. Golabek, and M. W. Schmidt, “Centrifuge assisted percolation of Fe–S melts in partially molten peridotite: time constraints for planetary core formation,” Earth Planet. Sci. Lett. 288, 84–95 (2009).CrossRefGoogle Scholar
  4. 4.
    P. S. Balog, R. A. Secco, D. C. Rubie, and D. J. Frost, “Equation of state of liquid Fe–10 wt % S: Implications for the metallic cores of planetary bodies,” J. Geophys. Res. 108, (2003)  https://doi.org/10.1029/2001JB001646
  5. 5.
    A. C. Barr, “On the origin of Earth’s Moon,” J. Geophys. Res. 121, 1573–1601 (2016).  https://doi.org/10.1002/2016JE005098 CrossRefGoogle Scholar
  6. 6.
    D. K. Belashchenko, “Estimation of the thermodynamic characteristics of the Earth’s core using the Embedded Atom Model,” Geochem. Int. 52 (6), 456–466 (2014).CrossRefGoogle Scholar
  7. 7.
    D. Breuer, T. Rueckriemen, and T. Spohn, “Iron snow, crystal floats, and inner-core growth: modes of core solidification and implications for dynamos in terrestrial planets and moons,” Progress Earth Planet. Sci. P. 2, 39 (2015).  https://doi.org/10.1186/s40645-015-0069-y CrossRefGoogle Scholar
  8. 8.
    A. S. Buono and D. Walker, “The Fe-rich liquidus in the Fe–FeS system from 1 bar to 10 GPa,” Geochim. Cosmochim. Acta 75, 2072–2087 (2011).CrossRefGoogle Scholar
  9. 9.
    B. Charlier, T. L. Grove, O. Namur, and F. Holtz, “Crystallization of the lunar magma ocean and the primordial mantle–crust differentiation of the Moon,” Geochim. Cosmochim. Acta 234, 50–69 (2018).  https://doi.org/10.1016/j.gca.2018.05.006 CrossRefGoogle Scholar
  10. 10.
    P. Dyel, K. Parkin, and V. Daily, “Lunar electrical conductivity and temperature based on data of magnetic experiments of Apollo mission,” Cosmochemistry of the Moon and Planets, Ed. by A.P. Vinogradov (Nauka, Moscow, 1975), pp. 323–340 [in Russian].Google Scholar
  11. 11.
    N. Dauphas, C. Burkhardt, P. H. Warren, and T. Fang-Zhen, “Geochemical arguments for an Earth-like Moon-forming impactor,” Phil. Trans. R. Soc. A. 372, 20130244 (2014).CrossRefGoogle Scholar
  12. 12.
    C. de Capitani and T. H. Brown, “The computation of equilibrium in complex systems containing non-ideal solutions,” Geochim. Cosmochim. Acta 51, 2639–2652 (1987).CrossRefGoogle Scholar
  13. 13.
    Discussion Meeting Issue “Origin of the Moon: Challenges and Prospects,” organised and edited by D. J. Stevenson and A.N. Halliday, Phil. Trans. R. Soc. A 372, (2014).Google Scholar
  14. 14.
    R. T. Dodd, Meteorites (Cambridge University Press, Cambridge, 1981).Google Scholar
  15. 15.
    D. S. Draper, S. A. duFrane, C. K. Shearer, R. E. Dwarzski, and C. B. Agee, “High-pressure phase equilibria and element partitioning experiments on Apollo 15 green C picritic glass: implications for the role of garnet in the deep lunar interior,” Geochim. Cosmochim. Acta 70, 2400–2416 (2006).CrossRefGoogle Scholar
  16. 16.
    G. N. Elanskii and V. A. Kudrin, “Structure and properties of iron-base melts,” Bull. South Ural State Univ. Ser. Metallurgy 15, 11–19 (2015).Google Scholar
  17. 17.
    S. M. Elardo, D. S. Draper, and C. K. Shearer, “Lunar magma ocean crystallization revisited: Bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite,” Geochim. Cosmochim. Acta 75, 3024–3045 (2011).  https://doi.org/10.1016/j.gca.2011.02.033 CrossRefGoogle Scholar
  18. 18.
    K. P. Florensky, A. T. Bazilevsky, and G. A. Burba, Essays on Comparative Planetology (Nauka, Moscow, 1981) [in Russian].Google Scholar
  19. 19.
    J. Gagnepain-Beyneix, P. Lognonné, H. Chenet, D. Lombardi, and T. Spohn, “A seismic model of the lunar mantle and constraints on temperature and mineralogy,” Phys. Earth Planet. Inter. 159, 140–166 (2006).CrossRefGoogle Scholar
  20. 20.
    E. M. Galimov, “Modern state of the problem of origin of the Earth–Moon system,” Problems of Origin and Evolution of Biosphere, Ed. by E. M. Galimov (Librokom, Moscow, 2008), pp. 213–222.Google Scholar
  21. 21.
    E. Galimov, “Formation of the Moon and the Earth from a common supraplanetary gas-dust cloud (lecture presented at the XIX all-Russia symposium on isotope geochemistry on November 16, 2010,” Geochem. Int. 49 (6), 537–554 (2011)CrossRefGoogle Scholar
  22. 22.
    E. M. Galimov and A. M. Krivtsov, Origin of the Moon. New Concept. Geochemistry and Dynamics (De Gruyter, 2012).CrossRefGoogle Scholar
  23. 23.
    R. Ganapathy and E. Anders, “Bulk composition of the Moon and Earth, estimated from meteorites,” Proc. 5 th Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 5, 1181–1206 (1974).Google Scholar
  24. 24.
    R. F. Garcia, J. Gagnepain-Beyneix, S. Chevrot, and P. Lognonné, “Erratum to “Very preliminary reference Moon model”, [Phys. Earth Planet. Inter. 188 (2011) 96–113],” Phys. Earth Planet. Inter. 202–203, 89–91 (2012).CrossRefGoogle Scholar
  25. 25.
    R. E. Grimm, “Geophysical constraints on the lunar Procellarum KREEP Terrane,” J. Geophys. Res. Planets 118, 768–777 (2013).  https://doi.org/10.1029/2012JE004114 CrossRefGoogle Scholar
  26. 26.
    W. K. Hartmann, “The giant impact hypothesis: past, present (and future?),” Phil. Trans. R. Soc. A. 372, 20130249 (2014).  https://doi.org/10.1098/rsta.2013.0249 CrossRefGoogle Scholar
  27. 27.
    M. M. Hirschmann, “Mantle solidus: experimental constraints and the effects of peridotite composition,” Geochem. Geophys. Geosyst. 1 (2000). doi. 2000GC000070.Google Scholar
  28. 28.
    L. L. Hood and J. H. Jones, “Geophysical constraints on lunar bulk composition and structure: A reassessment,” J. Geophys. Res. 92E, 396–410 (1987).CrossRefGoogle Scholar
  29. 29.
    L. L. Hood, D. L. Mitchell, R. P. Lin, M. H. Acuña, and A. B. Binder, “Initial measurements of the lunar induced magnetic dipole moment using lunar prospector magnetometer data,” Geophys. Res. Lett. 26, 2327–2330 (1999).CrossRefGoogle Scholar
  30. 30.
    E. Jarosewich, “Chemical analyses of meteorites: a compilation of stony and iron meteorite analyses,” Meteoritics 25, 323–337 (1990).CrossRefGoogle Scholar
  31. 31.
    Z. Jing, Y. Wang, Y. Kono, T. Yu, T. Sakamaki, C. Park, M. L. Rivers, S. R. Sutton, and G. Shen, “Sound velocity of Fe–S liquids at high pressure: implications for the Moon’s molten outer core,” Earth Planet. Sci. Lett. 396, 78–87 (2014).  https://doi.org/10.1016/j.epsl.2014.04.015 CrossRefGoogle Scholar
  32. 32.
    J. H. Jones and H. Palme, “Geochemical constraints on the origin of the Earth and Moon,” Origin of the Earth and Moon, Ed. by R.M. Canup et al. (Univ. Arizona Press, Tucson, 2000), pp. 197–216.Google Scholar
  33. 33.
    S. J. Keihm and M. G. Langseth, “Lunar thermal regime to 300 km,” Proc. 8th Lunar Sci. Conf., 499-514 (1997).Google Scholar
  34. 34.
    A. Khan, J. A. D. Connolly, J. Maclennan, and K. Mosegaard, “Joint inversion of seismic and gravity data for lunar composition and thermal state,” Geophys. J. Int. 168, 243–258 (2007).CrossRefGoogle Scholar
  35. 35.
    A. Khan, A. Pommier, G. Neumann, and K. Mosegaard, “The lunar Moho and the internal structure of the Moon: a geophysical perspective,” Tectonophys. 609, 331–352 (2013).  https://doi.org/10.1016/j.tecto.2013.02.024 CrossRefGoogle Scholar
  36. 36.
    A. S. Konopliv, S. W. Asmar, E. Carranza, W. L. Sjogren, and D. N. Yuan, “Recent gravity models as a result of the Lunar Prospector mission,” Icarus 150, 1–18 (2001).CrossRefGoogle Scholar
  37. 37.
    V. A. Kronrod and O. L. Kuskov, “Inversion of seismic and gravity data for the composition and core sizes of the Moon,” Izv. Phys. Solid Earth 47, 711–730 (2011).CrossRefGoogle Scholar
  38. 38.
    V. A. Kronrod, E. V. Kronrod, and O. L. Kuskov, “Constraints on the thermal regime and uranium content in the Moon: evidence from seismic data,” Dokl. Earth Sci. 455, 485–489 (2014).CrossRefGoogle Scholar
  39. 39.
    O. L. Kuskov, “Constitution of the Moon: 4. Composition of the mantle from seismic data,” Phys. Earth Planet. Inter. 102, 239–257 (1997).CrossRefGoogle Scholar
  40. 40.
    O. L. Kuskov and D. K. Belashchenko, “Thermodynamic properties of Fe–S alloys from molecular dynamics modeling: Implications for the lunar fluid core,” Phys. Earth Planet. Inter. 258, 43–50 (2016a).  https://doi.org/10.1016/j.pepi.2016.07.006 CrossRefGoogle Scholar
  41. 41.
    O. L. Kuskov and D. K. Belashchenko, “Molecular dynamics estimates for the thermodynamic properties of the Fe–S liquid cores of the Moon, Io, Europa, and Ganymede,” Sol. Syst. Res. 50 (3), 165–183 (2016b).  https://doi.org/10.1134/S0038094616030035 CrossRefGoogle Scholar
  42. 42.
    O. L. Kuskov and V. A. Kronrod, ”Geochemical constraints on the model of the composition and thermal conditions of the Moon according to seismic data,” Izv. Phys. Solid Earth 45, 753–768 (2009).CrossRefGoogle Scholar
  43. 43.
    O. L. Kuskov, V. A. Dorofeeva, V. A. Kronrod, and A. B. Makalkin, Systems of Jupiter and Saturn: Formation, Composition, and Internal Structure of Large Satellites (LKI, Moscow, 2009) [in Russian].Google Scholar
  44. 44.
    O. L. Kuskov, V. A. Kronrod, and E. V. Kronrod, “Thermo-chemical constraints on the interior structure and composition of the lunar mantle,” Phys. Earth Planet. Inter. 235, 84–95 (2014a).  https://doi.org/10.1016/j.pepi.2014.07.011 CrossRefGoogle Scholar
  45. 45.
    O. L. Kuskov, V. A. Kronrod, A. A. Prokofyev, and N. I. Pavlenkova, “Thermo-chemical structure of the lithospheric mantle underneath the Siberian craton inferred from long-range seismic profiles,” Tectonophys. 615. 154–166 (2014b).  https://doi.org/10.1016/j.tecto.2014.01.006 CrossRefGoogle Scholar
  46. 46.
    O. L. Kuskov, V. A. Kronrod, A. A. Prokofyev, and N. I. Pavlenkova, “Petrological–geophysical models of the internal structure of the lithospheric mantle of the Siberian craton,” Petrology 22 (1), 21–49 (2014c).  https://doi.org/10.1134/S0869591114010056 CrossRefGoogle Scholar
  47. 47.
    M. Laneuville, M. A.Wieczorek, D. Breuer, J. Aubert, G. Morard, and T. Rückriemen, “A long-lived lunar dynamo powered by core crystallization,” Earth Planet. Sci. Lett. 401, 251–260 (2014).CrossRefGoogle Scholar
  48. 48.
    E. B. Lebedev and E. M. Galimov, “Experimental modeling of the origin of the moon’s metallic core at partial melting,” Geochem. Int. 50 (8), 639–648 (2012).CrossRefGoogle Scholar
  49. 49.
    B. Yu. Levin and S. V. Maeva, “Puzzles of origin and thermal history of Moon,” Cosmochemistry of Moon and Planets (Nauka, Moscow, 1975), pp. 283–298 [in Russian].Google Scholar
  50. 50.
    P. Lognonné, “Planetary seismology,” Annu. Rev. Earth Planet. 33, 571–604 (2005).CrossRefGoogle Scholar
  51. 51.
    P. Lognonné, J. Gagnepain-Beyneix, and H. Chenet, “A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon,” Earth Planet. Sci. Lett. 211, 27–44 (2003).CrossRefGoogle Scholar
  52. 52.
    J. Longhi, “Petrogenesis of picritic mare magmas: constraints on the extent of early lunar differentiation,” Geochim. Cosmochim. Acta 70, 5919–5934 (2006).CrossRefGoogle Scholar
  53. 53.
    K. Matsumoto, R. Yamada, F. Kikuchi, S. Kamata, Y. Ishihara, T. Iwata, H. Hanada, and S. Sasaki, “Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR,” Geophys. Res. Lett. 42 (2015).  https://doi.org/10.1002/2015GL065335
  54. 54.
    I. Matsuyama, F. Nimmo, J. T. Keane, N. H. Chan, G. J. Taylor, M. A. Wieczorek, W. S. Kiefer, and J. G. Williams, “GRAIL, LLR, and LOLA constraints on the interior structure of the Moon,” Geophys. Res. Lett. 43, 8365–8375 (2016).  https://doi.org/10.1002/2016GL069952 CrossRefGoogle Scholar
  55. 55.
    W. F. McDonough, “Constraints on the composition of the continental lithospheric mantle,” Earth Planet. Sci. Lett. 101, 1–18 (1990).CrossRefGoogle Scholar
  56. 56.
    M. M. M. Meier, A. Reufer, and R. Wieler, “On the origin and composition of Theia: constraints from new models of the Giant Impact,” Icarus 242, 316–328 (2014).CrossRefGoogle Scholar
  57. 57.
    G. Morard, J. Bouchet, A. Rivoldini, D. Antonangeli, M. Roberge, E. Boulard, A. Denoeud, and M. Mezouar, “Liquid properties in the Fe–FeS system under moderate pressure: tool box to model small planetary cores,” Am. Mineral. 103, 1770–1779 (2018).Google Scholar
  58. 58.
    J. W. Morgan, J. Hertogen, and E. Anders, “The Moon: composition determined by nebula processes,” Moon and Planets 18, 465–478 (1978).CrossRefGoogle Scholar
  59. 59.
    S. Mueller, G. J. Taylor, and R. J. Phillips, “Lunar composition: a geophysical and petrological synthesis,” J. Geophys. Res. 93, 6338–6352 (1988).CrossRefGoogle Scholar
  60. 60.
    Y. Nakamura, “Seismic velocity structure of the lunar mantle,” J. Geophys. Res. 88, 677–686 (1983).CrossRefGoogle Scholar
  61. 61.
    C. R. Neal, “Interior of the Moon: the presence of garnet in the primitive deep lunar mantle,” J. Geophys. Res. Planets 106, 27865–27885 (2001).CrossRefGoogle Scholar
  62. 62.
    C. R. Neal, “The Moon 35 years after Apollo: What’s left to learn?” Chem. Erde 69, 3–43 (2009).  https://doi.org/10.1016/j.chemer.2008.07.002 CrossRefGoogle Scholar
  63. 63.
    K. Nishida, A. Suzuki, H. Terasaki, Y. Shibazaki, Y. Higo, S. Kuwabara, Y. Shimoyama, M. Sakurai, M.Ushioda, E. Takahashi, T. Kikegawa, D. Wakabayashi, and N. Funamori, “Towards a consensus on the pressure and composition dependence of sound velocity in the liquid Fe–S system,” Phys. Earth Planet. Inter. 257, 230–239 (2016).  https://doi.org/10.1016/j.pepi.2016.06.009 CrossRefGoogle Scholar
  64. 64.
    H. S. C. O’Neill and H. Palme, “Composition of the silicate Earth: implications for accretion and core formation,” The Earth’s Mantle: Structure, Composition, and Evolution–The Ringwood Volume, Ed. by I. Jackson (Cambridge Univ. Press, Cambridge, 1998), pp. 3–126.Google Scholar
  65. 65.
    A. Pommier, “Influence of sulfur on the electrical resistivity of a crystallizing core in small terrestrial bodies,” Earth Planet. Sci. Lett. 496, 37–46 (2018).  https://doi.org/10.1016/j.epsl.2018.05.032 CrossRefGoogle Scholar
  66. 66.
    W. Qian, W. Wang, F. Zou, and Z. Wu, “Elasticity of orthoenstatite at high pressure and temperature: Implications for the origin of low VP/VS zones in the mantle wedge,” Geophys. Res. Lett. 45, 665–673 (2018).  https://doi.org/10.1002/2017GL075647 CrossRefGoogle Scholar
  67. 67.
    S. N. Raevskiy, T. V. Gudkova, O. L. Kuskov, and V. A. Kronrod, “On reconciling the models of the interior structure of the Moon with gravity data,” Izv. Phys. Solid Earth 51 (1), 134–142 (2015).CrossRefGoogle Scholar
  68. 68.
    N. Rai and W. van Westrenen, “Lunar core formation: new constraints from metal–silicate partitioning of siderophile elements,” Earth Planet. Sci. Lett. 388, 343–352 (2014).CrossRefGoogle Scholar
  69. 69.
    K. Righter, B. M. Go, K. A. Pando, L. Danielson, D. K. Ross, Z. Rahman, and L. P. Keller, “Phase equilibria of a low S and C lunar core: Implications for an early lunar dynamo and physical state of the current core,” Earth Planet. Sci. Lett. 463, 323–332 (2017).  https://doi.org/10.1016/j.epsl.2017.02.003 CrossRefGoogle Scholar
  70. 70.
    A. E. Ringwood, “Basaltic magmatism and the bulk composition of the Moon. I. Major and heat-producing elements,” Moon Planets 16 (4), 389–423 (1977).CrossRefGoogle Scholar
  71. 71.
    A. E. Ringwood and E. Essene, “Petrogenesis of Apollo 11 basalts, internal constitution and origin of the Moon,” Proc. Apollo 11th Lunar Sci. Conf. 1, 769–799 (1970).Google Scholar
  72. 72.
    E. L. Ruskol, The Origin of the Moon (Nauka, Moscow, 1975) [in Russian].Google Scholar
  73. 73.
    C. Sanloup, F. Guyot, P. Gillet, G. Fiquet, M. Mezouar, and I. Martinez, “Density measurements of liquid Fe–S alloys at high-pressure,” Geophys. Res. Lett. 27, 811–814 (2000).CrossRefGoogle Scholar
  74. 74.
    M. Sato, N. L. Hickling, J. E. McLane, “Oxygen fugacity values of Apollo 12, 14, and 15 lunar samples and reduced state of lunar magmas,” Proc. Lunar Sci. Conf. 4, 1061–1079 (1973).Google Scholar
  75. 75.
    E. V. Sharkov and O. A. Bogatikov, “Early stages of the tectonic and magmatic development of the Earth and Moon: similarities and differences,” Petrology 9 (2), 97–118 (2001).Google Scholar
  76. 76.
    C. K. Shearer, P. C. Hess, M. A. Wieczorek, M. E. Pritchard, E. M. Parmentier, L. E. Borg, J. Longhi, L. T. Elkins-Tanton, C. R. Neal, I. Antonenko, R. M. Canup, A. N. Halliday, T. L.Grove, B. H. Hager, D. C. Lee, and U. Wiechert, “Thermal and magmatic evolution of the Moon. New views of the Moon,” Rev. Mineral. Geochem. 60, 365–518 (2006).CrossRefGoogle Scholar
  77. 77.
    H. Shimizu, M. Matsushima, F. Takahashi, H. Shibuya, and H. Tsunakawa, “Constraint on the lunar core size from electromagnetic sounding based on magnetic field observations by an orbiting satellite,” Icarus 222, 32–43 (2013).CrossRefGoogle Scholar
  78. 78.
    G. A. Snyder, L. A. Taylor, and C. R. Neal, “A chemical model for generating the source of mare basalts: Combined equilibrium and fractional crystallization of the lunar magmasphere,” Geochim. Cosmochim. Acta 56, 3809–3823 (1992).CrossRefGoogle Scholar
  79. 79.
    P. A. Sossi and F. Moynier, “Chemical and isotopic kinship of iron in the Earth and Moon deduced from the lunar Mg-suite,” Earth Planet. Sci. Lett. 471, 125–135 (2017).  https://doi.org/10.1016/j.epsl.2017.04.029 CrossRefGoogle Scholar
  80. 80.
    S. R. Taylor, Planetary Science: A Lunar Perspective (LPI, Houston, 1982).Google Scholar
  81. 81.
    G. J. Taylor and M. A. Wieczorek, “Lunar bulk chemical composition: a post-gravity recovery and interior laboratory reassessment,” Phil. Trans. R. Soc. A. 372, 20130242 (2014).  https://doi.org/10.1098/rsta.2013.0242 CrossRefGoogle Scholar
  82. 82.
    S. R. Taylor, G. J. Taylor, and L. A. Taylor, “The Moon: A Taylor perspective,” Geochim. Cosmochim. Acta 70, 594–5918 (2006).CrossRefGoogle Scholar
  83. 83.
    N. Tsujino, Y. Nishihara, Y. Nakajima, E. Takahashi, K. Funakoshi, and Y. Higo, “Equation of state of γ-Fe: Reference density for planetary cores,” Earth Planet. Sci. Lett. 375, 244–253 (2013).CrossRefGoogle Scholar
  84. 84.
    P. H. Warren, ““New” lunar meteorites: implications for composition of the global lunar surface, lunar crust, and the bulk Moon,” Meteorit. Planet. Sci. 40, 477–506 (2005).  https://doi.org/10.1111/j.1945-5100.2005.tb00395.x CrossRefGoogle Scholar
  85. 85.
    P. H. Warren and K. L. Rasmussen, “Megaregolith insulation, internal temperatures and bulk uranium content of the Moon,” J. Geophys. Res. 92 (B5), 3453– 3465 (1987).CrossRefGoogle Scholar
  86. 86.
    T. R. Watters, M. S. Robinson, M. E. Banks, T. Tran, and B. W. Denevi, “Recent extensional tectonics on the Moon revealed by the Lunar Reconnaissance Orbiter Camera,” Nat. Geosci. 5, 181–185 (2012).CrossRefGoogle Scholar
  87. 87.
    R. C. Weber, P. Lin, E. J. Garnero, Q. Williams, and P. Lognonné, “Seismic detection of the lunar core,” Science 331, 309–312 (2011).CrossRefGoogle Scholar
  88. 88.
    M. A. Wieczorek, B. J. Jolliff, A. Khan, M. E. Pritchard, B. J. Weiss, J. G. Williams, L. L. Hood, K. Righter, C. R. Neal, C. K. Shearer, I. S. McCallum, S. Tompkins, B. R. Hawke, C. Peterson, J. J. Gillis, and B. Bussey “The constitution and structure of the lunar interior. New views of the Moon,” Rev. Mineral. Geochem. 60, 221–364 (2006).CrossRefGoogle Scholar
  89. 89.
    M. A. Wieczorek, G. A. Neumann, F. Nimmo, W. S. Kiefer, G. J. Taylor, H. J. Melosh, R. J. Phillips, S. C. Solomon, J. C. Andrews-Hanna, S. W. Asmar, A. S. Konopliv, F. G. Lemoine, D. E. Smith, M. M. Watkins, J. G. Williams, and M. T. Zuber, “The crust of the Moon as seen by GRAIL,” Science 339, 671–675 (2013).CrossRefGoogle Scholar
  90. 90.
    J. G. Williams, A. S. Konopliv, D. H. Boggs, R. S. Park, D.‑N. Yuan, F. G. Lemoine, S. Goossen, E. Mazarico, F. Nimmo, R. C. Weber, S. W. Asmar, H. J. Melosh, G. A. Neumann, R. J. Phillips, D. E. Smith, S. C. Solomon, M. M. Watkins, M. A. Wieczorek, J. C. Andrews-Hanna, J. W. Head, W. S. Kiefer, I. Matsuyama, P. J. McGovern, G. J. Taylor, and M. T. Zuber, “Lunar interior properties from the GRAIL mission,” J. Geophys. Res. Planets 119, (2014).  https://doi.org/10.1002/2013JE004559
  91. 91.
    J. G. Williams, D. H. Boggs, C. F. Yoder, J. T. Ratcliff, and J. O. Dickey, “Lunar rotational dissipation in solid body and molten core,” J. Geophys. Res. 106, 27933–27968 (2001).CrossRefGoogle Scholar

Copyright information

© 2019 2019

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations