Skip to main content
Log in

Early Cretaceous Alkaline Magmatism of East Antarctica: Peculiarities, Conditions of Formation, and Relationship with the Kerguelen Plume

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Generalization of available literature and new original data showed that the Early Cretaceous high-Mg alkaline magmatism is confined to the ancient Lambert rift zone. Alkaline ultramafic rocks developed in the areas of this zone (Jetty Oasis, western flank of the Beaver and Radok lakes, Fisher and Meredith massifs) were derived through melting of metasomatized continental mantle at ~1270°С and at depths of 130–140 km. Variations of major and trace-element composition and the wide range in olivine composition (Fo91–Fo80) are consistent with its change through intrachamber crystallization. The average values of initial isotope composition of ultra-alkaline high-Mg basalts are as follows: 143Nd/144Nd—0.512485, 87Sr/86Sr—0.70637, 207Pb/204Pb—15.671, 206Pb/204Pb—18.391, 208Pb/204Pb—38.409. They are close to the model ЕМII source and can be arbitrarily taken as the preliminary assessment of isotope composition of a source of Mesozoic melts. Based on lithophile element and isotope compositions, the alkaline high-Mg basaltic magmatism is thought to be related to the thermal impact of the Kerguelen plume on the lithospheric mantle of East Gondwana 120–110 Ma. Similar ancient deep-seated metasomatized eastern Gondwanan mantle, which contains carbonates and biotite and has an age of 2.4 Ga, was found in southern East Antarctica as well as in the north within eastern India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Alkaline-Ultrabasic Rocks of the Jetty Oasis and Formation-Geodynamic Prerequisites in Revealing Kimberlite and Carbonatite Deposits at the Antarctic and other Platforms: Report of NIR (VNIIOkeanologiya, Leningrad, 1989) [in Russian].

  2. A. V. Andronikov, “Mantle minerals from alkaline–ultrabasic rocks, East Antarctica,” Geological–Geophysical Studies in Antarctica (PGO Sevmorgeologiya, Leningrad, 1987), pp. 48–53 [in Russian].

    Google Scholar 

  3. A. V. Andronikov, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (LGU, Leningrad, 1990) [in Russian].

  4. A. V. Andronikov and L. S. Egorov, “Mesozoic alkaline-ultrabasic magmatism of Jetty Peninsula,” Gondwana Eight: Assembly, Evolution, and Dispersal, Ed. by R. H. Findley, R. Unrug, M. R. Banks, and J. J.Veevers (Rotterdam, Balkema, 1993), pp. 547–558.

    Google Scholar 

  5. A. V. Andronikov and S. F. Foley, “Trace element and Nd-Sr isotopic composition of ultramafic lamprophyres from the East Antarctic Beaver Lake area,” Chem. Geol. 175, 291–305 (2001).

    Article  Google Scholar 

  6. P. Armienti and P. Longo, “Three-dimensional representation of geochemical data from a multidimensional compositional space,” Int. J. Geosci. 2, 231–239 (2011).

    Article  Google Scholar 

  7. B. V. Belyatsky, and A. V. Andronikov, Deep-seated inclusions of lherzolites from alkaline-ultrabasic rocks in the Jetty Oasis (East Antarctica): mineralogical-geochemical composition, P–T conditions, and Sr–Nd isotope characteristics,” Scientific Results of the Russian Geological–Geophysical Studies in Antarctica, Ed. by E. V. Mikhalsky and A. A. Laiba (VNIIOkeanologiya, St. Petersburg, 2008), vol. 2, pp. 89–109.

  8. B. V. Belyatsky, and A. V. Andronikov, “Age of upper mantle of the Beaver Lake area (East Antarctica): Sm-Nd isotope systematic of mantle xenoliths,” Problems of Arctic and Antarctica78 (4), 146–169 (2009).

    Google Scholar 

  9. A. I. Buikin, L. N. Kogarko I. P. Solovova, A. B. Verchovsky, and A. A. Averin, “Pvt- parameters of fluid inclusions and the C, O, N, and Ar isotopic composition in A garnet lherzolite xenolith from the Oasis Jetty, East Antarctica,” Geochem. Int. 52 (10), 805–821 (2014).

    Article  Google Scholar 

  10. N. V. Chalapathi Rao, R. K. Srivastava, A. K. Sinha, and V. Ravikant, “Petrogenesis of Kerguelen mantle plume-linked Early Cretaceous ultrapotassic intrusive rocks from the Gondwana sedimentary basins, Damodar Valley, Eastern India,” Earth-Sci. Rev. 136, 96–120 (2014).

    Article  Google Scholar 

  11. M. Coffin, M. S. Pringal, R. A. Dungan, T. P. Gladczenko, M. Storey, R. D. Muller, and L. A. Gahagan, “Kerguelen hot spot magma output since 130 Ma,” J. Petrol. 43 (7), 1121–1139 (2002).

    Article  Google Scholar 

  12. P. Comin-Chiaramonti, A. Cundari, E. M. Piccirillo, C. B. Gomes, F. Castorina, P. Censi, A. Demin, A. Marzoli, S. Speziale, and V. F. Velázquez, “Potassic and sodic igneous rocks from Eastern Paraguay: their origin from the lithospheric mantle and genetic relationships with the associated Paraná flood tholeiites,” J. Petrol. 38, 495–528 (1997).

    Article  Google Scholar 

  13. L. A. Coogan, A. D. Saunders, and R. N. Wilson, “Aluminium-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces,” Chem. Geol. 368, 1–10 (2014).

    Article  Google Scholar 

  14. L. S. Egorov, “Some petrological, geochemical, and genetic features of hypabyssal alkaline-ultrabasic rocks by the example of polcenit–alkali picritic complex of the Jetty Oasis, Prince Charles Mountains, East Antarctica,” Geokhimiya, No. 1, 24–39 (1994).

    Google Scholar 

  15. D. H. Elliot, T. H. Fleming, P. R. Kyle, and K. A. Foland, “Long-distance transport of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica,” Earth Planet. Sci. Lett. 167, 89–104 (1999).

    Article  Google Scholar 

  16. F. Ferraccioli, C. A. Finn, T. A. Jordan, R. E. Bell, L. M. Anderson, and D. Damaske, “East Antarctic rifting triggers uplift of the Gamburtsev Mountains,” Nature 479, 388–392 (2011).

    Article  Google Scholar 

  17. S. F. Foley, A. V. Andronikov, and S. Melzer, “Petrology of ultramafic lamprophyres from the Beaver Lake area of Eastern Antarctica and their relation to the breakup of Gondwanaland,” Mineral. Petrol. 74, 361–384 (2002).

    Article  Google Scholar 

  18. S. F. Foley, Dorrit E. Jacob, and Hugh St. C. O’Neill, “Trace element variations in olivine phenocrysts from Ugandan potassic rocks as clues to the chemical characteristics of parental magmas,” Contrib. Mineral Petrol. 162, 1–20 (2011). doi 10.1007/s00410-010-0579-y

    Article  Google Scholar 

  19. S. F. Foley, D. Prelevic, T. Rehfeldt, and D. E. Jacob, “Minor and trace elements in olivines as probes into early igneous and mantle melting processes,” Earth Planetary Sci. Lett. 363, 181–191 (2013).

    Article  Google Scholar 

  20. Geological-Geophysical Works in the Antarctic Mountainous Areas during 32 SAE: Report of NIR 61-65 (VNIIOKeanologiya, Leningrad, 1988) [in Russian].

  21. D. A. Golynsky and A. V. Golynsky, “Rift systems of East Antarctica: a key to understanding the Gondwana break up,” Regional. Geol. Metallogen. 52, 58–72 (2012).

    Google Scholar 

  22. G. E. Grikurov, E. M. Orlenko, and L. V. Fedorov, “Alkaline-ultrabasic rocks of the Beaver Lake area, East Antarctica,” Tr. SAE80, 87–99 (1980).

    Google Scholar 

  23. M. Harrowfield, G. R. Holdgate, C. J. L. Wilson, and S. McLoughlin, “Tectonic significance of the Lambert Graben, East Antarctica: reconstructing the Gondwanan Rift,” Geology 33 (3), 197–200 (2005).

    Article  Google Scholar 

  24. A. W. Hofmann, “Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements,” Treatise on Geochemistry2, 61–101 (2003).

    Google Scholar 

  25. J. Hofmann, “Fault tectonics and magmatic ages in the Jetty Oasis area, Mac. Robertson Land: a contribution to the Lambert rift development,” Geological evolution of Antarctica, Ed. by R. A. Thomson, J. A. Crame, and J. N. W. Thomson (Cambridge University Press, Cambridge, 1991), pp. 107–112.

    Google Scholar 

  26. D. A. Ionov, W. L. Griffin, and S. Y. O’Reilly, “Volatile-bearing minerals and lithophile trace elements in the upper mantle,” Chem. Geol. 141, 153–184 (1997).

    Article  Google Scholar 

  27. R. Sh. Krymsky, D. S. Sergeev, G. E. Brügman, S. S. Shevchenko, A. V. Antonov, and S. A. Sergeev, “Experience in study of osmium isotope composition and PGE distribution in peridotites of the lithosphere mantle, East Antarctica,” Regional. Geol. Metallogen. 46, 51–60 (2011).

    Google Scholar 

  28. I. V. Kudryavtsev, A. A. Laiba, and B.V. Belyatsky, “A new dike of phlogopite alkaline picrites on the Meredith massif, Prince Charles mountains, East Antarctica,” Scientific Results of the Russian Geological–Geophysical Studies in Antarctica, Ed. by G. L. Leitchenkov and A. A. Laiba (Politekhn, Univ., St. Petersburg, 2006), vol. 1, pp. 54–65 [in Russian].

    Google Scholar 

  29. R. G. Kurinin and G. E. Grikurov, “Structure of the rift zone of the Lambert Glacier,” Tr. SAE, 80, 76–86 (1980).

    Google Scholar 

  30. R. G. Kurinin A. S. Grinson, and Dun Tzun In, “Rift zone of the Lambert Glacier as possible alkaline-ultrabasic province in East Antarctica,” Dokl. Akad. Nauk SSSR 299, 944–947 (1988).

  31. A. A. Laiba, A. V. Andronikov, L. S. Egorov, and L. V. Fedorov, “Stock-like and dike bodies of the alkaline-ultrabasic composition in the Jetty oasis, Prince Charles Mountains, East Antarctica,” Geological-Geophysical Studies in Antarctica (PGO Sevmorgeologiya, Leningrad, 1987), pp. 35–46 [in Russian].

    Google Scholar 

  32. G. L. Leitchenkov, B. V. Belyatsky, A. M. Popkov, and S. V. Popov, “Geological nature of subglacial Lake Vostok in East Antarctica,” Proceedings of Glaciological Studies98, 81–92 (2004).

    Google Scholar 

  33. G. L. Leitchenkov, Yu. B. Guseva V. V. Gandyukhin, S. V. Ivanov, and L. V. Safonova, “Structure of the Earth’s crust and tectonic evolution history of the southern Indian Ocean (Antarctica),” Geotectonics 48 (1), 5–23 (2014).

    Article  Google Scholar 

  34. G. L. Leitchenkov, A. V. Antonov, P. I. Lunev, and V. Y. Lipenkov, “Geology and environments of subglacial Lake Vostok,” Philos. Trans. A, R. Soc. 374, (2016) 20140302. doi 10.1098/rsta.2014.0302

    Google Scholar 

  35. G. Leitchenkov, B. Belyatsky, E. Lepekhina, A. Antonov, R. Krymsky, A. Andronikov, and S. Sergeev, “Age and isotopic marks of K-rich Manning Massif trachybasalts: an evidence for Lambert-Amery rift-system initiation (East Antarctica),” Geophys. Research Abstracts19, EGU2017-17888, EGU General Assembly 2017.

  36. G. L. Leitchenkov, B. V. Belyatsky, and V. D. Kaminsky, “On age of the Riftogenic basaltic magmatism in East Antarctica,” Dokl. Earth Sci. 478(1), 11–14 (2018).

    Article  Google Scholar 

  37. B. C. McKelvey and N. C. N. Stephenson, “A geological reconnaissance of the Radok Lake area, Amery Oasis, Prince Charles Mountains,” Antarctic Sci. 2 (1), 53–66 (1990).

    Article  Google Scholar 

  38. “Mica lamprophyre (alnoite) from Radok lake, Prince Charles Mountains, Antarctica: report: 1-6,” Commonwealth of Australia. Department of National Development. Bureau of Mineral Resources, Geology and Geophysics., no. 1971/108 (1971).

  39. N. A. Migdisova, A. V. Sobolev, N. M. Sushchevskaya, E. P. Dubinin, and D. V. Kuzmin, “Mantle heterogeneity at the Bouvet Triple Junction based on the composition of olivine phenocrysts,” Russ. Geol. Geophys. 58 (11), 1289–1304 (2017).

    Article  Google Scholar 

  40. E. V. Mikhalsky, Proterozoic Geological Compelxes of East Antarctica: Composition and Origin, (VNIIOkeanologiya, St. Petersburg, 2007) [in Russian].

  41. E. V. Mikhalsky and J. W. Sheraton, “Association of dolerite and lamprophyres dykes, Jetty Peninsula (Prince Charles Mountains, East Antarctica),” Antarct. Sci. 5, 297–307 (1993).

    Article  Google Scholar 

  42. E. V. Mikhalsky, A. A. Laiba, and N. P. Surina, “The Lambert Province of alkaline-basic and alkaline-ultrabasic rocks in East Antarctica: geochemical and genetic characteristics of igneous complexes,” Petrology 6 (5), 466–479 (1998).

    Google Scholar 

  43. E. V. Mikhalsky, J. W. Sheraton, A. A. Laiba, R. J. Tingey, D. E. Thost, E. N. Kamenev, and L. V. Fedorov, “Geology of the Prince Charles Mountains, Antarctica,” Geosci. Austral. Bull. 247, (2001).

  44. H. Mirnejad and K. Bell, “Origin and source evolution of the Leucite Hills lamproites: evidence from Sr−Nd−Pb−O isotopic compositions,” J. Petrol. 47 (12), 2460–2489 (2006).

    Article  Google Scholar 

  45. D. A. Plavsa, S. Collins, J. F. Foden, L. Kropinski, M. Santosh, T. R. K. Chetty, and C. Clark, “Delineating crustal domains in Peninsular India: age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai Block,” Precambrian Res. 198–199, 77–93 (2012).

    Article  Google Scholar 

  46. J. W. Sheraton, “Geochemistry of mafic igneous rocks of the northern Prince Charles Mountains, Antarctica,” Aust. J. Earth Sci. 30, 295–304 (1983).

    Google Scholar 

  47. J. W. Sheraton and R. N. England, “Highly potassic mafic dykes from Antarctica,” J. Geol. Soc. Aust. 27, 129–135 (1980).

    Article  Google Scholar 

  48. N. W. Sheraton, W. N. Thomson, and N. D. Collerson, “Mafic dyke swarms of Antarctica,” Mafic Dyke Swarms, Ed. by H. C. Halls and W. F. Fahrig, Geol. Ass. Canada, Sp. Pap. 34, 419–432 (1987).

  49. J. W. Sheraton, L. P. Black, H. M. T. McCljlin, and R. L. Oliver, “Age and origin of a compositionally varied mafic dyke swarm in the Bunger Hills, East Antarctica,” Chem.Geol. 85, 215–246 (1990).

    Article  Google Scholar 

  50. A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, G. M. Yaxley, N. T. Arndt, S.-L. Chung, L. V. Danyushevsky, T. Elliott, F. A. Frey, M. O. Garcia, A. A. Gurenko, V. S. Kamenetsky, A. C. Kerr, N. A. Krivolutskaya, V. V. Matvienkov, I. K. Nikogosian, A. Rocholl, I. A. Sigurdsson, N. M. Sushchevskaya, and M. Teklay, “The amount of recycled crust in sources of mantle-derived melts,” Science 316, 412–417 (2007). doi 10.1126/Science.1138113

    Article  Google Scholar 

  51. A. V. Sobolev, E. V. Asafov, A. A. Gurenko, N. T. Arndt, V. G. Batanova, M. V. Portnyagin, D. Garbe-Schönberg, and S. P. Krasheninnikov, “Komatiites reveal an Archean hydrous deep-mantle reservoir,” Nature 531 (7596), 628–632 (2016). doi 10.1038/nature17152

    Article  Google Scholar 

  52. N. C. N. Stephenson and N. D. J. Cook, “High K/Na alkaline mafic dykes near Radok Lake, northern Prince Charles Mountains, East Antarctica,” Lithos 29, 87–105 (1992).

    Article  Google Scholar 

  53. S. -S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Sp. Publ.42, 313–345 (1989).

  54. N. M. Sushchevskaya, B. V. Belyatsky, and A. A. Laiba, “Origin, distribution and evolution of plume magmatism in East Antarctica,” Volcanology, Ed. by Fr. Stoppa (Intech Rijeka, Croatia, 2011), pp. 3–29.

    Google Scholar 

  55. N. M. Sushchevskaya, N. A. Migdisova, A. V. Antonov, R. Sh. Krymsky, B. V. Belyatsky, D. V. Kuzmin, and Ya. V. Bychkova, “Geochemical features of the Quaternary lamproitic lavas of Gaussberg Volcano, East Antarctica: result of the impact of the Kerguelen Plume,” Geochem. Int. 52 (12), 1030–1048 (2014).

    Article  Google Scholar 

  56. R. J. Tingey, “The regional geology of Archaen and Proterozoic rocks in Antarctica,” The Geology of Antarctica (Oxford University Press, Oxford, 1991), pp. 1–73.

    Google Scholar 

  57. J. J. Veevers, “Reconstructions before rifting and drifting reveal the geological connections between Antarctica and its conjugates in Gondwanaland,” Earth-Sci. Rev. 111, 249–318 (2012).

    Article  Google Scholar 

  58. J. J. Veevers and A. Saeed, “Permian–Jurassic Mahanadi and Pranhita–Godavari Rifts of Gondwana India: provenance from regional paleoslope and U–Pb/Hf analysis of detrital zircons,” Gondwana Res. 16, 633–654 (2009).

    Article  Google Scholar 

  59. G. M. Yaxley, V. S. Kamenetsky, G. T. Nichols, R. Maas, E. Belousova, A. Rosenthal, and M. Norman, “The discovery of kimberlites in Antarctica extends the vast Gondwanan Cretaceous province,” Nature Communications 4(2921), 1–7 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no.16-17-10139). The development of analytical techniques and softwares for processing of mass-spectrometric data was supported by the Russian Foundation for Basic Research (project no. 16-03-01079).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Sushchevskaya, B. V. Belyatsky, G. L. Leitchenkov or D. V. Kuzmin.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushchevskaya, N.M., Belyatsky, B.V., Tkacheva, D.A. et al. Early Cretaceous Alkaline Magmatism of East Antarctica: Peculiarities, Conditions of Formation, and Relationship with the Kerguelen Plume. Geochem. Int. 56, 1051–1070 (2018). https://doi.org/10.1134/S0016702918110071

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918110071

Keywords:

Navigation