Skip to main content
Log in

Characteristics of Bioaccumulation of Elements in Organs and Tissues of Fish during Stabilization of Anthropogenic Load: Evidence from Whitefish Coregonus lavaretus L. of Subractic Lake Imandra

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—This paper considers the bioaccumulation of elements in organs and tissues of whitefish from the Lake Imandra reaches, which were subjected to different anthropogenic impacts, during stabilization of anthropogenic load. It is shown that the element accumulation in the organs and tissues of the whitefish is mainly controlled by the individual resistance to the higher concentrations of toxic elements and physiological state rather than by their concentrations in water. The models of element redistribution in liver and kidney depending on the physiological state of the fish are constructed. Changes in iron and zinc metabolism at different concentrations of hemoglobin in blood and stages of fish disease are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Blanchard and M. Grosell, “Copper toxicity across salinities from freshwater to seawater in the euryhaline fish Fundulus heteroclitus: is copper an ionoregulatory toxicant in high salinities?” Aquat. Toxicol. 80, 131–139 (2006).

    Article  Google Scholar 

  2. V. N. Bol’shakov and T. I. Moiseenko, “Antropogenic evolution of animals: facts and their interpretation,” Russ. J. Ecol. 40 (5), 305–313 (2009).

    Article  Google Scholar 

  3. V. M. Bykova and Z. I. Belova, A Reference Book on Cooling Treatment of Fish (Agropromizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  4. T. Crommentuijn, D. Sijm, J. Bruijn, et al., ”Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations,” J. Environ. Management 60, 121–143 (2000).

    Article  Google Scholar 

  5. A. O. F. da Silvaa, and C. B. R. Martineza, “Acute effects of cadmium on osmoregulation of the freshwater teleost Prochilodus lineatus: enzymes activity and plasma ions,” Aquat. Toxicol. 156, 161–168 (2014).

    Article  Google Scholar 

  6. S. I. Dolomatov and V. A. Zhukov, Actual Problems of Study of Exchange Processes of Fish (Radom University, Radom, 2011) [in Russian].

    Google Scholar 

  7. R. Eid, N. T. T. Arab, and M. T. Greenwood, “Iron mediated toxicity and programmed cell death: a review and a re-examination of existing paradigms,” Biochim. Biophys. Acta 1864, 399–430 (2017).

    Article  Google Scholar 

  8. Fish Physiology: Homeostasis and Toxicology of Essential Metals, Ed. by C. M. Wood, A. P. Farrell, and C. J.Brauner, (Academic Press, San Diego, 2012a), vol. 31A.

  9. Fish Physiology: Homeostasis and Toxicology of Non-Essential Metals, Ed. by C. M. Wood, A. P. Farrell, and C. J. Brauner (Academic Press, San Diego, 2012b), Vol. 31B.

  10. N. A. Gashkina, “Essential elements in the organs and tissues of fish depending on the freshwater toxicity and physiological state,” Geochem. Int. 55(10), 927–934 (2017).

    Article  Google Scholar 

  11. M. Grosell, and C. M. Wood, “Copper uptake across rainbow trout gill: mechanisms of apical entry,” J. Exp. Biol. 205, 1179–1188 (2002).

    Google Scholar 

  12. A. A. Ivanov, Fish Physiology (Mir, Moscow, 2003) [in Russian].

  13. J. M. Jacobs, P. R. Sinclair, J. F. Sinclair, N.Gorman, H. S. Walton, S. G. Wood, and C. Nichols, “Formation of zinc protoporphyrin in cultured hepatocytes: effects of ferrochelatase inhibition, iron chelation or lead,” Toxicology 125, 95–105 (1998).

    Article  Google Scholar 

  14. J. Klinck, M. Dunbar, S. Brown, J. Nichols, A. Winter, C. Hughes, and R. C. Playle, “Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout. (Oncorhynchus mykiss),” Aquat. Toxicol. 72, 161–175 (2005).

    Article  Google Scholar 

  15. O. N. Krylov, A Textbook on Prevention and Diagnostics of Fish Poisoning by Toxic Matters (Moscow, 1980) [in Russian].

    Google Scholar 

  16. V. I. Lushchak, “Contaminant-induced oxidative stress in fish: a mechanistic approach,” Fish Physiol. Biochem. 42, 711–747 (2016)

    Article  Google Scholar 

  17. J. C. McGeer, S. Nadella, D. H. Alsop, L. Hollis, L. N. Taylor, D. G. McDonald, and C. M. Wood, “Influence of acclimation and cross-acclimation of metals on acute Cd toxicity and Cd uptake and distribution in rainbow trout (Oncorhynchus mykiss),” Aquat. Toxicol. 84, 190–197 (2007).

    Article  Google Scholar 

  18. T. I. Moiseenko, “Hematological indicators of fish in assessment of their toxicosis,” Vopr. Ikhtiol., No. 2, 371–380 (1998).

  19. T. I. Moiseenko and L. P. Kudryavtseva, “Trace metals accumulation and fish pathologies in areas affected by mining and metallurgical enterprises in the Kola Region, Russia,” Environ. Pollut. 114 (2), 285–297 (2001).

    Article  Google Scholar 

  20. T. I. Moiseenko, V. A. Dauvalter, A. A. Lukin, L. P. Kudryavtseva, B. P. Il’yashchuk, S. S. Sandimirova, L. Ya. Kagan, O. I. Vandysh, A. N. Sharov, Yu. N. Sharova, and I. N. Koroleva, Antropogenic Modifications of the Imandra Lake Ecosystems (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  21. T. I. Moiseenko, A. A.Voinov, V. V. Megorsky, N. A. Gashkina, L. P. Kudriavtseva, O. I. Vandish, A. N. Sharov, Y. N. Sharova, and I. N. Koroleva, “Ecosystem and human health assessment to define environmental management strategies: the case of long-term human impacts on an Arctic lake,” Sci. Total Environ. 369, 1–20 (2006).

    Article  Google Scholar 

  22. T. I. Moiseenko, N. A. Gashkina, A. N. Sharov, O. I. Vandysh, and L. P. Kudryavtseva, “Anthropogenic transformations of the Arctic ecosystem of Lake Imandra: tendencies for recovery after long period of pollution,” Water Res., 36 (3), 296–309 (2009).

    Article  Google Scholar 

  23. T. I. Moiseenko, A. N. Sharov, O. I. Vandish, L. P. Kudryavtseva, N. A. Gashkina, and C. Rose “Long-term modification of Arctic lake ecosystem: Reference condition, degradation under toxic impacts and recovery (case study Imandra Lakes, Russia),” Limnologica 39, 1–13 (2009).

    Article  Google Scholar 

  24. S. Niyogi, R. Kent, and C. M. Wood, “Effects of water chemistry variables on gill binding and acute toxicity of cadmium in rainbow trout (Oncorhynchus mykiss): a biotic ligand model (BLM) approach,” Comp. Biochem. Physiol. C148, 305–314 (2008).

    Google Scholar 

  25. I. A. Novikova and S. A. Khoduleva, Clinical and Laboratory Hematology (Vysshaya Shkola, Minsk, 2013) [in Russian].

    Google Scholar 

  26. I. F. Pravdin, A Textbook on Fish Study (Pishchevaya Promyshlennost, Moscow, 1966) [in Russian].

    Google Scholar 

  27. G. G. Pyle, S. M. Swanson, and D. M. Lehmkuhl “The influence of water hardness, pH, and suspended solids on nickel toxicity to larval fathead minnows. (Pimephales promelas),” Wat. Air Soil Pollut. 133, 215–226 (2002).

    Article  Google Scholar 

  28. P. Sharp, “The molecular basis of copper and iron interactions,” Proc. Nutr. Soc. 63, 563–569 (2004).

    Article  Google Scholar 

  29. V. M. Sheibak, “Biological significance and regulation of zinc homeostasis of mammals,” Probl. Zdorov’ya Ekol. 50 (4), 11–16 (2016.

    Google Scholar 

  30. I. Yu Torshin and O. A. Gromova, Expert Analysis of Data on Molecular Pharmacology (MTsNMO, Moscow, 2012) [in Russian].

  31. M. Wang, Y. Wang, L. Zhang, J. Wang, H. Hong, and D. Wang, “Quantitative proteomic analysis reveals the mode-of-action for chronic mercury hepatotoxicity to marine medaka (Oryzias melastigma),” Aquat. Toxicol. 130–131, 123–131 (2013).

    Article  Google Scholar 

  32. Water Quality Standards for Fishery Objects, Including Norms of Maximum Permissible Concentrations of Toxic matters in Fishery Basins (VNIRO, Moscow, 2011) [in Russian].

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 18-17-00184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Gashkina.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gashkina, N.A. Characteristics of Bioaccumulation of Elements in Organs and Tissues of Fish during Stabilization of Anthropogenic Load: Evidence from Whitefish Coregonus lavaretus L. of Subractic Lake Imandra. Geochem. Int. 56, 1016–1027 (2018). https://doi.org/10.1134/S0016702918100075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918100075

Keywords:

Navigation