Skip to main content
Log in

Living Matter of the Biosphere: Mass and Chemical Elemental Composition

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper discusses V.I. Vernadsky’s concept of living matter of the biosphere. Living matter in the sense of all organisms of the biosphere considered collectively is heterogeneous, plastic, integral, organized, and facilitates the continuous movement of atoms of chemical elements, transforms energy, and forms and preserves corresponding environments. Living matter is characterized by a certain chemical elemental composition and mass and performs certain functions. Living matter is mosaic and ubiquitous. It is characterized by homeostasis due to biological diversity, multiple relations between individual organisms, and the unique ability of adaptation. The paper reports data on the mass of living matter, its differentiation, and chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A Human. Medical–Biological Data: A Report of Working Group of Com. 2 MKRZ on Conditional Human, Ser. 23 (Meditsina, Moscow, 1977) [in Russian].

  2. G. M. Abdurakhmanov, D. A. Krivolutsky, E. G. Myalo, and G. N. Ogureeva, Biogeography. A Textbook for Students, 3rd Ed., (Akademiya, Moscow, 2008) [in Russian].

    Google Scholar 

  3. P. H. Abelson and T. V. Hoering, “Carbon isotope fractionation in formation of amino acids by photosynthetic organisms,” Proc. Nat. Acad. Sci. USA 47 (5), 623–632 (1961).

    Article  Google Scholar 

  4. G. P. Aksenov, “On Geocentrism of V.I. Vernadskii,” Vopr. Istorii Estestvoznaniya Tekhniki 38 (2), 246–247 (2017).

    Google Scholar 

  5. V. A. Alekseenko and A. V. Alekseenko, Chemical Elements in Geochemical Systems. Soil Clarkes of Settlement Landscapes (YuFU, Rostov on Don, 2013) [in Russian].

  6. A. P. Avtsyn, A. A. Zhavoronkov, M. A. Rish, and L. S. Strochkova, Microelementosis of Human (Meditisna, Moscow, 1991) [in Russian].

  7. N. V. Baranovskaya, L. P. Rikhvanov, T. N. Ignatova, D. V. Narkovich, and O. A. Denisova, Essays on Human Geochemistry (Tomsk Politekhn. Uiv., Tomsk, 2015) [in Russian].

    Google Scholar 

  8. V. N. Bashkin, Biogeochemistry (Vysshaya Shkola, Moscow, 2008) [in Russian].

    Google Scholar 

  9. N. I. Bazilevich, “Biogeochemistrty of the Earth and functional models of exchange processes in natural ecosystems,” Tr. Biogeokhim. Lab. 17, 55–73 (1979)

    Google Scholar 

  10. M. Begon, J. L. Harper, and R. T. Colin, Ecology: Individuals, Populations, and Communities (Blackwell Scientific, Boston, 1990).

    Google Scholar 

  11. H. J. Bowen, M. Environmental Chemistry of the Elements (Acad. Press, New York, 1979).

    Google Scholar 

  12. H. Craig, “The geochemistry of the stable carbon isotopes,” Geochim. Cosmochim. Acta 3, 53–92 (1953).

    Article  Google Scholar 

  13. L. Sh. Davitashvili, Evolution of Conditions of Fossil Fuels in Relation with Evolution of the Organic World (Nauka, Moscow, 1981) [in Russian]

    Google Scholar 

  14. L. L. Demina and S. V. Galkin, Biogeochemistry of Trace Elements in Deep-Water Hydrothermal Ecosystems (GEOS, Moscow, 2013) [in Russian].

    Google Scholar 

  15. A. M. Durso, Stable Isotopes and the Ecology and Physiology of Reptiles, All Ga Diate Thesis and Dissertations, Paper 5064 (Utah State University, Logan, 2016).

  16. J. R. Ehleringer, and C. B. Osmond, Stable isotopes. Plant Physiological Ecology: Field Methods & Instrumentation, Ed. by R. W. Pearcy, J. Ehleringer, H. A. Mooney, and P. W. Rundel (Chapman & Hall Ltd., New York, 1989), pp. 281–300.

    Google Scholar 

  17. B. J. Enquist and K. J. Niklas, “Global allocation rules for patterns of biomass partitioning in seed plants,” Science 295 (5559), 1517–1520 (2002).

    Article  Google Scholar 

  18. Environmental Encyclopedia, Ed. by Glenn Elert (Gale Research, Detroit, 1994) Michigan: 95 p.

  19. O. Z. Eremchenko, Theory on Biosphere. Organization of Biosphere and Biogeochemical Cycles. A Textbook (Perm. Gos. Univ., Perm, 2010) [in Russian].

    Google Scholar 

  20. V. V. Ermakov and S. F. Tyutikov, Geochemical Ecology of Animals (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  21. V. V. Ermakov, S. F. Tyutikov, and V. A. Safonov, Biogeochemical Indication of Microelemnthoses (M.: Publ. RAS, 2018) [in Russian].

    Google Scholar 

  22. B. G. Fedorov, Russian Carbon Balance (Nauchnyi Konsul’tant, Moscow, 2017) [in Russian].

    Google Scholar 

  23. C. B. Field, M. J. Behrenfeld, J. T. Randerson, and P. Falkowski, “Primary production of the biosphere: integrating terrestrial and oceanic components,” Science 281 (5374), 237–240 (1998).

    Article  Google Scholar 

  24. I. V. Florinsky, Man and the Geosphere (Nova Science Publishers, New York, 2010).

    Google Scholar 

  25. E. Galimov, “Role of low solar luminosity in the history of the biosphere,” Geochem. Int. 55 (5), 401–417 (2017).

    Article  Google Scholar 

  26. E. M. Galimov, “Carbon geochemistry,” Priroda, No. 3, 3–13 (1993).

    Google Scholar 

  27. E. M. Galimov, Nature of Biological Isotope Fractionation (Moscow, Nauka, 1981) [in Russian].

    Google Scholar 

  28. A. S. Isaev, G. N. Korovin, and D. G. Zamolodchikov, “Contribution of Russian forests in the world carbon balance and tasks of forest branch after ratification of the Kyoto protocol,” Ustoch. Lesopol’zovanie 4 (6), 16–20 (2004).

    Google Scholar 

  29. A. S. Isaev, G. N. Korovin, and V. I. Sukhikh, Ecological Problems of CO2 Absorption by Forest Recovery and Cultivation in Russia (RASKhN, Moscow, 1995) [in Russian].

  30. A. Kabata-Pendias and H. Pendias, Biogeochemia Pierwlastkov Sladowych (Wydawnictwo Naukowe PWN, Warzsawa, 1999).

  31. K. I. Kobak, Biotic Components of Hydrocarbon Cycle (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  32. L. A. Kodina, “Carbon isotope fractionation in various forms of biogenic organic matter: I. Partitioning of carbon isotopes between the main polymers of higher plant biomass,” Geochem. Int. 48 (12), 1235–1244 (2010).

    Article  Google Scholar 

  33. V. D. Korzh, Biosphere. Formation of Element Compositions of Hydrosphere and Lithosphere (Verlag, Lambert AP, 2017).

    Google Scholar 

  34. V. V. Kovalsky, Geochemical Ecology (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  35. V. A. Krivitsky, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (MGU, Moscow, 1988).

  36. A. I. Kurbatova and A. M. Tarko, “Modeling of the global biogeochemical cycle of carbon and nitrogen in the “atmosphere–plant–soil” system”,” Vestn. RUDN, Ser. Ekol. Bezopasn, Zhiznedeyat., No. 3, 40–47 (2012).

  37. A. Yu. Lein, L. I. Moskalev, Yu. A. bogdanov, and A. M. Sagalevich, “Oceanic hydrothermal systems and life,” Priroda, No. 5, 47–55 (2000).

    Google Scholar 

  38. N. V. Lukina, and V. V. Nikonov, Biogeochemical Cycles in Northern Forests under Conditions of Aerotechnogenic Pollution (Kol’sk, Nauchn. Ts., Apatity, 1996) [in Russian].

  39. N. V. Malysheva, B. N. Moiseev, A. N. Filipchuk, and T. A. Zolina, “Methods of assessment of carbon balance in forest ecosystems and opportunities of their application for calculation of annual deposition,” Lesnoi Vestn. 21 (1), 4–13 (2017).

    Google Scholar 

  40. B. Markert, S. Fränzle, and S. Wünschmann Chemical Evolution: The Biological System of the Elements (Springer International Publishing, 2015).

    Book  Google Scholar 

  41. A. Meier-Abich, The Historical-Physiological Background of the Modern Evolution Biology (Leiden, 1964).

    Google Scholar 

  42. T. I. Moiseenko, “Evolution of biogeochemical cycles under anthropogenic loads: limits impacts,” Geochem. Int. 55 (10), 841–860 (2017).

    Article  Google Scholar 

  43. C. Mora, D. P. Tittensor, S. Adl, A. G. B. Simpson, and B. Worm, “How many species are there on Earth and in the Ocean?,” PLoS Biol 9 (8), e1001127 (2011). https:// doi.org/10.1371/journal.pbio.1001127

    Article  Google Scholar 

  44. A. O. Nier and E. A. Gulbransen, “Variations in the relative abundance of the carbon isotopes,” J. Am. Chem. Soc. 61, 697–698 (1939).

    Article  Google Scholar 

  45. S. A. Ostroumov, “New aspects of organisms and detritus in detoxicant system of biosphere,” Ekol. Khimiya 26 (3), 164–173 (2017).

    Google Scholar 

  46. A. D. Pokarzhevsky, Geochemical Ecology of Terrestrial Animals (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  47. A. Poldervart “Chemistry of the Earth’s crust,” Crust of the Earth. Spec. Paper GeoL Soc. Amer. Baltimore 62, 19–144 (1955).

    Google Scholar 

  48. V. M. Puzakov, and I. K. Zakharov, “Diversity and distribution of mobile genetic elements in genomes of marine inverterbrates,” Vavilov. Zh. Genet. Selektsii 21 (2), 269–283 (2017).

    Google Scholar 

  49. L. E. Rodin and N. I. Bazilevich, Dynamics of Organic Matter and Biological Cycle of Sol Elements and Nitrogen in the Main Types of Plants (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  50. E. A. Romankevich and A. A. Vetrov, Carbon Cycle in the Russian Arcctic Seas (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  51. E. A. Romankevich, “Living matter of the Earth (biogeochemical aspects of the problem),” Geokhimiya, No. 2, 292–306 (1988).

    Google Scholar 

  52. A. B. Ronov, “General tendencies in the composition evolution of crust, ocean, and atmosphere,” Geokhimiya, no. 8, 715–743 (1964).

  53. G. S. Roszenberg, E. G. Kolomyts, and L. S. Sharyya, “Carbon balance of forest ecosystems under conditions of forthcoming global warming,” Geography of Productivity and Biogeochemical Cycle of Terrestrial landscapes: on 100th Anniversary of Prof. N. I. Bazilevich, Ed. by G. V. Dobrovol’skii (Inst. Geograf. RAN, Moscow, 2010), pp. 126–139.

    Google Scholar 

  54. V. A. Rozhkov and A. Z. Shvidenko, “First digital maps of phytomass, motrmass, and annual production,” Geography of Productivity and Biogeochemical Cycle of Terrestrial landscapes: on 100th Anniversary of Prof. N. I. Bazilevich, Ed. by G. V. Dobrovol’skii (Inst. Geograf. RAN, Moscow, 2010), pp. 114–125.

    Google Scholar 

  55. G. N. Saenko, Metals and Halogens in Marine Organisms (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  56. N. M. Strakhov, Development of Lithogenetic Ideas in Russia and USSR (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  57. A. A. Tishkov, Biospheric Functions of Natural Ecosystems of Russia (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  58. A. A. Titlyanova, “Productivity of grassy ecosystems of the world,” Geography of Productivity and Biogeochemical Cycle of Terrestrial landscapes: on 100th Anniversary of Prof. N. I. Bazilevich, Ed. by G. V. Dobrovol’skii (Inst. Geograf. RAN, Moscow, 2010), pp. 144–153.

    Google Scholar 

  59. S. F. Tyutikov, “Biogeochemical indication: Current state and development outlooks,” Geochem. Int. 55 (10), 902–910 (2017).

    Article  Google Scholar 

  60. V. A. Uspensky, Carbon Balance in the Biosphere in Relation with Problem of Carbon Distribution in the Earth’s Crust (Gostoptekhizdat, Leningrad, 1956) [in Russian].

    Google Scholar 

  61. E. A. Vaganov, S. V. Verkhovets, A. V. Panov, N. N. Koshurnikova, A. A. Knorre, and N. V. Ekimova, Selected Papers of Forest Ecology: Biogeochemical Cycles in Ecosystems (SFU, Krasnoyarsk, 2007) [in Russian].

    Google Scholar 

  62. S. Vassilev, D. Baxter, L. K. Andersen and C. G. Vassileva, “An overview of the chemical composition of biomass,” Fuel 89(5), 913–933 (2010).

    Article  Google Scholar 

  63. N. B. Vassoevich, “Main regularities characterizing organic matter of modern and fossilized sediments,” in Nature of Organic Matter of Modern And Fossilized Sediments, Ed. by N. B. Vassoevich (Nauka, Moscow, 1973), pp. 11–60 [in Russian].

    Google Scholar 

  64. A. L. Vereshchaka, Sea Biology (Nauchnyi Mir, Moscow, 2003) [in Russian].

    Google Scholar 

  65. V. I. Vernadsky, “Living matter in the Earth Crust,” Archive of RAN, 518 (1), pp. 29–30. (1916–1919)

  66. V. I. Vernadsky, “Evolution of species and living matter,” Priroda, No. 3, 227–250 (1928).

    Google Scholar 

  67. V. I. Vernadsky, “Reproduction of organisms and its significance in the biosphere structure,” V.I. Vernadskii. Biogeochemical Essays. 1922–1932. (AN SSSR, Moscow–Leningrad, 1940a), pp. 59–83 [in Russian].

    Google Scholar 

  68. V. I. Vernadsky, General considerations on study of chemical composition of living organisms,” in V.I. Vernadskii. Biogeochemical Essays. 1922–1932. (AN SSSR, Moscow–Leningrad, 1940b), pp. 147–166 [in Russian].

  69. V. I. Vernadsky, “Chemical composition of living matter in relation with chemistry of the Earth’s crust,” V.I. Vernadskii. Biogeochemical Essays. (AN SSSR, Moscow–Leningrad, 1940c), pp. 9–25 [in Russian].

    Google Scholar 

  70. V. I. Vernadsky, Living Matter (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  71. V. I. Vernadsky, Living Matter in Biosphere, Ed. by A. L. Yanshin (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  72. A. P. Vinogradov, “Chemical elementary composition of marine organisms,” Tr. Biogeokhim. Lab. 6, (1944).

  73. A. P. Vinogradov, “How old is ocean?” Priroda, No. 12, 50–57 (1975).

    Google Scholar 

  74. A. P. Vinogradov, “Oxygen isotopes and photosynthesis,” in Selected Papers. Isotope Geochemistry and Problems of Biogeochemistry (Nauka, Moscow, 1993), pp. 77–97 [in Russia].

    Google Scholar 

  75. P. A. Vodop’yanov, Stability and Dynamics of Biosphere (Nauka Tekhnika, Minsk, 1981) [in Russian].

    Google Scholar 

  76. A. I. Voinar, Biological Role of Trace Elements in Organism of Animals and Human (Vysshaya Shkola, Moscow, 1960) [in Russian].

    Google Scholar 

  77. G. V. Voitkevich, and V. A. Vronskii, Principles of Biosphere Theory (Feniks, Rostov on Don, 1996) [in Russian].

    Google Scholar 

  78. W. B. Whitman, D. C. Coleman, and W. J. Wiebe, “Prokaryotes: The unseen majority,” Proc. Natl. Acad. Sci. USA 95, 6578–6583 (1998).

    Article  Google Scholar 

  79. R. H. Whittaker (1975) Communities and Ecosystems / 2nd ad. N.Y.; London: MacMillan Publ. Co., Inc., 387 p.

    Google Scholar 

  80. G. M. Woodwell, R. H. Whittaker, W.A. Reiners, G.E. Likens, C.C. Delwiche, D.B. Botkin (1978) The biota and the word carbon budget. Science199(4325), 141-146.

    Article  Google Scholar 

  81. F. T. Yanshina, Evolution of Viewpoints of V.I. Vernadskii on Biosphere and Development of the Noosphere Theory (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  82. A. A. Yaroshevsky, Problems of Modern Geochemistry (Novosibirsk. Gos. Univ., Novosibirsk, 2004) [in Russian].

    Google Scholar 

  83. V. E. Zakrutkin, “On relative amount of living matter at different stages of the biosphere evolution,” Zhivye Biokosnye Sistemy, No. 2, (2013). http://www.jbks.ru/ archive/issue-2/article-3.

  84. G. A. Zavarzin, Lecture on the Natural History of Microbiology (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  85. L. A. Zenkevich, Z. N. Filatova, G. M. Belyaev, T. S. Luk’yanova, and I. A. Suetova, “Quantitative distribution of zoobenthos in the World Ocean,” Byull. Mosk. O-va Ispyt, Prir., Otd. Biol. 76 (3), 27–34 (1971).

    Google Scholar 

  86. V. B. Zhivetin, Biospheric Risks (IITs Bon Antsa, Izhevsk, 2008) [in Russian].

Download references

ACKNOWLEDGMENTS

The authors thank Acad. E.M. Galimov for valuable comments provided when the manuscript was prepared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ermakov.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakov, V.V., Kovalsky, Y.V. Living Matter of the Biosphere: Mass and Chemical Elemental Composition. Geochem. Int. 56, 969–981 (2018). https://doi.org/10.1134/S0016702918100063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918100063

Keywords:

Navigation