Skip to main content
Log in

Historical Variation in the Distribution of Trace and Major Elements in a Poor Fen of Fenghuang Mountain, NE China

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Ombrotrophic bogs are widely used to reconstruct the history of atmospheric metal deposition. Minerotrophic fens are potential archives as well but not much attention has been paid to them. This study examined the accumulation of major and trace elements in a poor fen of Fenghuang Mountain, NE China. Peat cores were dated by 210Pb and 137Cs techniques and elemental analyses were conducted after a two-step sequential digestion with HCl. Results suggest no significant pollution for other trace metals but Pb in Fenghuang Mountain area. Atmospheric soil dust flux (ASD) was calculated from the Ti content in the peat, and its decreasing trend over the last 60 years agrees with the East Asian winter monsoon (EAWM) shift, which suggests that ASD could be a potential climatic proxy for the EAWM variability in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. A. Ali, B. Ghaleb, M. Garneau, H. Asnong, and J. Loisel, “Recent peat accumulation rates in minerotrophic peatlands of the Bay James region, Eastern Canada, inferred by 210Pb and 137Cs radiometric techniques,” Appl. Radiat. Isotopes 66, 1350–1358 (2008).

    Article  Google Scholar 

  2. M. Allan, G. Le Roux, F. De Vleeschouwer, R. Bindler, M. Blaauw, N.Piotrowska, J. Sikorski, and N. Fagel, “High-resolution reconstruction of atmospheric deposition of trace metals and metalloids since AD 1400 recorded by ombrotrophic peat cores in Hautes-Fagnes, Belgium,” Environ. Pollut. 178, 381–394 (2013).

    Article  Google Scholar 

  3. P. G. Appleby, “Three decades of dating recent sediments by fallout radionuclides: a review,” Holocene 18, 83–93 (2008).

    Article  Google Scholar 

  4. S. Azoury, J. Tronczyński, J.F. Chiffoleau, D. Cossa, K. Nakhle, S. Schmidt, and G. Khalaf, “Historical records of mercury, lead, and polycyclic aromatic hydrocarbons depositions in a dated sediment core from the eastern Mediterranean,” Environ. Sci. Technol. 47, 7101–7109 (2013).

    Article  Google Scholar 

  5. K. Bao, W. Xia, X. Lu, and G. Wang, “Recent atmospheric lead deposition recorded in an ombrotrophic peat bog of Great Hinggan Mountains, northeast China, from 210Pb and 137Cs dating,” J. Environ. Radioact. 101, 773–779 (2010).

    Article  Google Scholar 

  6. K. Bao, W. Xing, X. Yu, H. Zhao, N. McLaughlin, X. Lu, and G. Wang, “Recent atmospheric dust deposition in an ombrotrophic peat bog in Great Hinggan Mountain, northeast China,” Sci. Total Environ. 431, 33–45 (2012).

    Article  Google Scholar 

  7. K. Bao, J. Shen, G. Wang, and G. Le Roux, “Atmospheric deposition history of trace metals and metalloids for the last 200 years recorded by three peat cores in Great Hinggan Mountain, northeast China,” Atmosphere 6, 380–409 (2015a).

    Article  Google Scholar 

  8. K. Bao, G. Wang, W. Xing, and J. Shen, “Accumulation of organic carbon over the past 200 years in Alpine peatlands, northeast China,” Environ. Earth Sci. 73, 7489–7503 (2015b).

    Article  Google Scholar 

  9. K. Bao, J. Shen, G. Wang, and S. Tserenpil, “Anthropogenic, detritic and atmospheric soil-derived sources of lead in an alpine poor fen in northeast China,” J. Mt. Sci. 13, 255–264 (2016).

    Article  Google Scholar 

  10. D. Castro, M. Souto, E. Garcia-Rodeja, X. Pontevedra-Pombal, and M. Fraga, “Climate change records between the mid- and late holocene in a peat bog from Serra do Xistral (SW Europe) using plant macrofossils and peat humification analyses,” Palaeogeogr., Palaeoclimat., Paleoecol., 420, 82–95 (2015).

    Article  Google Scholar 

  11. J. M. Cloy, J. G. Farmer, M. C. Graham, and A. B. MacKenzie, “Retention of As and Sb in ombrotrophic peat bogs: records of As, Sb, and Pb deposition at four Scottish sites,” Environ. Sci. Technol. 43, 1756–1762 (2009).

    Article  Google Scholar 

  12. F. De Vleeschouwer, N. Fagel, A. Cheburkin, A. Pazdur, J. Sikorski, N. Mattielli, V. Renson, B. Fialkiewicz, N. Piotrowska, and G. Le Roux, “Anthropogenic impacts in North Poland over the last 1300 years – A record of Pb, Zn, Cu, Ni and S in an ombrotrophic peat bog,” Sci. Total Environ. 407, 5674–5684 (1999).

    Article  Google Scholar 

  13. F. De Vleeschouwer, H. Vanneste, D. Mauquoy, N. Piotrowska, F. Torrejón, T. Roland, A. Stein, and G. Le Roux, “Emissions from pre-Hispanic metallurgy in the South American atmosphere,” PloS one 9, e111315 (2014).

    Article  Google Scholar 

  14. L. M. Dupont, “Temperature and rainfall variation in the Holocene based on comparative palaeoecology and isotope geology of a hummock and a hollow (Bourtangerveen, The Netherlands),” Rev. Palaeobot. Palyno. 48, 71–88 (1986).

    Article  Google Scholar 

  15. M. Ferrat, D. Weiss, S. Dong, D.J. Large, B. Spiro, Y. Sun, and K. Gallagher, “Lead atmospheric deposition rates and isotopic trends in Asian dust during the last 9.5 kyr recorded in an ombrotrophic peat bog on the eastern Qinghai–Tibetan Plateau,” Geochim. Cosmochim. Acta 82, 4–22 (2012).

    Article  Google Scholar 

  16. C. Franzen, R. Kilian, and H. Biester, “Natural mercury enrichment in a minerogenic fen-evaluation of sources and processes,” J. Environ. Monitor. 6, 466–472 (2004).

    Article  Google Scholar 

  17. X. Gao, and C. T. A. Chen, “Heavy metal pollution status in surface sediments of the coastal Bohai Bay,” Water Res. 46, 1901–1911 (2012).

    Article  Google Scholar 

  18. J. R. Gallego, J. E. Ortiz, C. Sierra, T. Torres, and J. F. Lamas, “Multivariate study of trace element distribution in the geological record of Roñanzas peat bog (Asturias, N. Spain). paleoenvironmental evolution and human activities over the last 8000cal yr BP,” Sci. Total Environ. 454, 16–29 (2013).

    Article  Google Scholar 

  19. A. Kumar, W. Abouchami, S. Galer, V. Garrison, E. Williams, and M. Andreae, “A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean,” Atmos. Environ. 82, 130–143 (2014).

    Article  Google Scholar 

  20. A. Kuttner, T. M. Mighall, F. De Vleeschouwer, D. Mauquoy, A. Martinez Cortizas, I. D. L. Foster, and E. Krupp, “A 3300-year atmospheric metal contamination record from Raeburn Flow raised bog, south west Scotland,” J. Archaeol. Sci. 44, 1–11 (2014).

    Article  Google Scholar 

  21. M.E. Kylander, R. Bindler, A.M. Cortizas, K. Gallagher, C.M. Mörth, and S. Rauch, “A novel geochemical approach to paleorecords of dust deposition and effective humidity: 8500 years of peat accumulation at Store Mosse (the “Great Bog”), Sweden,”Quatern. Sci. Rev. 69, 69–82 (2013).

    Article  Google Scholar 

  22. G. Le Roux, D. Aubert, P. Stille, M. Krachler, B. Kober, A. Cheburkin, G. Bonani, and W. Shotyk, “Recent atmospheric Pb deposition at a rural site in southern Germany assessed using a peat core and snowpack, and comparison with other archives,” Atmos. Environ. 39, 6790–6801 (2005).

    Article  Google Scholar 

  23. Y. Liu, L. Sun, X. Zhou, Y. Luo, W. Huang, C. Yang, Y. Wang, and T. Huang, “A 1400-year terrigenous dust record on a coral island in South China Sea,” Sci. Rept. 4, 4994 (2014).

    Article  Google Scholar 

  24. P. Madsen, “Peat bog records of atmospheric mercury deposition,” Nature 293, 127–130 (1981).

    Article  Google Scholar 

  25. A. Martinez Cortizas, L. Lopez-Merino, R. Bindler, T. Mighall, and M. Kylander, “Atmospheric Pb pollution in N Iberia during the late Iron Age/Roman times reconstructed using the high-resolution record of La Molina mire (Asturias, Spain),” J. Paleolimnol. 50, 71–86 (2013).

    Article  Google Scholar 

  26. A. Martinez Cortizas, X. Pontevedra-Pombal, E. Garcia-Rodeja, J.C. Novoa-Munoz, and W. Shotyk, “Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition,” Science 284, 939–942 (1999).

    Article  Google Scholar 

  27. J. Muller, M. Kylander, A. Martinez-Cortizas, R. A. J. Wüst, D. Weiss, K. Blake, B. Coles, and R. Garcia-Sanchez, “The use of principal component analyses in characterising trace and major elemental distribution in a 55kyr peat deposit in tropical Australia: Implications to paleoclimate,”Geochim. Cosmochim. Acta 72, 449–463 (2008).

    Article  Google Scholar 

  28. S. Pratte, A. Mucci, and M. Garneau,“Historical records of atmospheric metal deposition along the St Lawrence Valley (eastern Canada) based on peat bog cores,” Atmos. Environ.79, 831–840 (2013).

    Article  Google Scholar 

  29. T. Sagawa, M. Kuwae, K. Tsuruoka, Y. Nakamura, M. Ikehara, and M. Murayama, “Solar forcing of centennial-scale East Asian winter monsoon variability in the mid-to late Holocene,” Earth Planet. Sci. Lett. 395, 124–135 (2014)

    Article  Google Scholar 

  30. A. Sapkota, A. K. Cheburkin, G. Bonani, and W. Shotyk, “Six millennia of atmospheric dust deposition in southern South America (Isla Navarino, Chile),” Holocene 17, 561–572 (2007).

    Article  Google Scholar 

  31. W. Shi, X. Feng, G. Zhang, L. Ming, R. Yin, Z. Zhao, and J. Wang, “High-precision measurement of mercury isotope ratios of atmospheric deposition over the past 150 years recorded in a peat core taken from Hongyuan, Sichuan Province, China,” Chin. Sci. Bullet. 56, 877–882 (2011).

    Article  Google Scholar 

  32. W. Shotyk, “Review of the inorganic geochemistry of peats and peatland waters,” Earth Sci. Rev. 25, 95–176 (1988).

    Article  Google Scholar 

  33. W. Shotyk, “Peat bog archives of atmospheric metal deposition: geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichment factors,” Environ. Rev. 4, 149–183 (1996).

    Article  Google Scholar 

  34. W. Shotyk, “The chronology of anthropogenic, atmospheric Pb deposition recorded by peat cores in three minerogenic peat deposits from Switzerland,” Sci. Total Environ. 292, 19–31 (2002).

    Article  Google Scholar 

  35. W. Shotyk, R. Belland, J. Duke, H. Kempter, M. Krachler, T. Noernberg, R. Pelletier, M. A. Vile, K. Wieder, and C. Zaccone, “Sphagnum mosses from 21 ombrotrophic bogs in the Athabasca Bituminous Sands region show no significant atmospheric contamination of heavy metals,”Environ. Sci. Technol. 48, 12603–12611 (2014).

    Article  Google Scholar 

  36. W. Shotyk, M. Krachler, A. Martinez Cortizas, A. Cheburkin, and H. Emons, “A peat bog record of natural, pre-anthropogenic enrichments of trace elements in atmospheric aerosols since 12370 14C yr BP, and their variation with Holocene climate change,” Earth Planet. Sci. Lett. 199, 21–37 (2002).

    Article  Google Scholar 

  37. W. Shotyk, D. Weiss, P. Appleby, A. Cheburkin, R. Frei, M. Gloor, J.D. Kramers, S. Reese, and W. Van Der Knaap, “History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland,” Science 281, 1635–1640 (1998).

    Article  Google Scholar 

  38. SPSS, Statistical Product and Service Solution, version 11.5, (Chicago, IL, USA: SPSS Inc.,2002).

  39. S. Tang, Z. Huang, J. Liu, Z. Yang, and Q. Lin, “Atmospheric mercury deposition recorded in an ombrotrophic peat core from Xiaoxing’an Mountain, northeast China,” Environ. Res. 118, 145–148 (2012).

    Article  Google Scholar 

  40. UNSCEAR,United Nations Scientific Committee on the Effect of Atomic Radiation, Sources and effects of ionizing radiation. UNSCEAR 2000 Report to General Assembly with Scientific Annexes, (New York, United Nations, 2000).

  41. W. O. van der Knapp, and J. F. N. van Leeuwen, “Climate-pollen relationship AD 1901–1996 in two small mires near the forest limit in the northern and central Swiss Alps,”Holocene13, 809–828 (2003).

    Article  Google Scholar 

  42. H. Vanneste, F. De Vleeschouwer, A. Martínez-Cortizas, C. von Scheffer, N. Piotrowska, A. Coronato, and G. Le Roux, “Late-glacial elevated dust deposition linked to westerly wind shifts in southern South America,” Sci. Rep. 5, 11670 (2015).

    Article  Google Scholar 

  43. C. Yafa, and J. G. Farmer, “A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry,” Anal. Chim. Acta 557, 296–303 (2006).

    Article  Google Scholar 

  44. Z. Zhou, and G. Zhang, “Typical severe dust storms in northern China during 1954–2002,” Chin. Sci. Bullet. 48, 2366–2370 (2003).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the National Key R&D Program of China (no. 2016YFA0602301), the NSFC-Belmont Forum Joint Research Project (no. 4166114404), the NSFC-CNRS Joint Research Project (no. 41611130163), Beijing Natural Science Foundation (no. 9164022) and NIGLAS Cross-functional Innovation Teams (no. NIGLAS2016TD01) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bao.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, K., Wang, G., Pratte, S. et al. Historical Variation in the Distribution of Trace and Major Elements in a Poor Fen of Fenghuang Mountain, NE China. Geochem. Int. 56, 1003–1015 (2018). https://doi.org/10.1134/S0016702918100038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918100038

Keywords:

Navigation