Advertisement

Geochemistry International

, Volume 56, Issue 4, pp 362–377 | Cite as

Geochemistry of Sandstones from the Silurian Hanxia Formation, North Qilian Belt, China: Implication for Provenance, Weathering and Tectonic Setting

  • Qian Hou
  • Chuanlong Mou
  • Qiyu Wang
  • Zhiyuan Tan
  • Xiangying Ge
  • Xiuping Wang
Article

Abstract

The North Qilian orogenic belt is the key to figure out the evolution and assembly of Asia. The Upper Silurian Hanxia Formation which is deposited in the north area of North Qilian Orogenic Belt is of utmost important to reveal the architecture and orogenic process of the North Qilian belt. So provenance analysis of the Hanxia Formation is of significance to reveal not only that the tectonic evolution of the central orogenic belt China, but also that Paleozoic Asia plate reconstruction. The ratios of elements and some discrimination diagrams based on geochemistry indicate that felsic rocks constitute their main source rocks. The chemical index of alteration is less than 80, indicating that the source rocks are relatively fresh and of low maturity. On the Th/Sc versus Zr/Sc scatter plot, samples from Hanxia Formation occur along the magmatic compositional variation trend of rocks, indicating that the rocks did not undergo obvious sedimentary sorting and recycling. The major and trace elements discrimination diagrams imply that Hanxia Formation rocks were derived from continental island arc. Recent studies show that the North China plate subducted southwards and produced subduction-related arc magmatism along the southern margin of the North Qilian Terrane during the Silurian. Therefore, we infer that in the late Silurian period the subduction-related arc became accreted to the Central Qilian terrane to the south, forming a composite continental arc, and the North Qilian belt accumulated in a fore-arc basin.

Keywords

North Qilian Orogenic Belt Hanxia Formation Provenance Tectonic setting Geochemistry Silurian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. S. Armstrong-Altrin, Y. I. Lee, S. P. Verma, and S. Ramasamy, “Geochemistry of sandstones from the upper Miocene Kudankulam formation, Southern Indian: implications for provenance, weathering, and tectonic setting,” J. Sed Res. 74 (2), 285–297 (2004).CrossRefGoogle Scholar
  2. J. S. Armstrong-Altrin and S. P. Verma, “Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic setting,” Sediment. Geol. 177, 115–129 (2005).CrossRefGoogle Scholar
  3. J. S. Armstrong-Altrin, R. Nagarajan, J. Madhacaraju, L. Rosalez-Hoz, Y. II. Lee, V. Balaram, A. Cruz-Martinez, and G. Avila-Ramirez, “Geochemistry of the Jurassic and upper cretaceous shales from the Molango region, Hidalgo, Eastern Mexico: implications of source-area weathering, provenance, and tectonic setting,” CR Geosci. 345, 185–202 (2013).CrossRefGoogle Scholar
  4. J. S. Armstrong-Altrin, R. Nagarajan, Y. I. Lee, and J. J. Kasper-Zubillaga, “Geochemistry of sands along the San Nicolas and San Carlos beaches, Gulf of California, Mexico: implication for provenance,” Turk J. Earth Sci. 23, 533–558 (2014).CrossRefGoogle Scholar
  5. D. Bakkiaraj, R. Nagendra, and J. S. Armstrong-Altrin, “Geochemistry of sandstones from the upper cretaceous Sillakkudi formation, Gauvery Basin, southern India: implication for provenance,” J. Geol. Soc. India 76, 453–467 (2010).CrossRefGoogle Scholar
  6. M. R. Bhatia, “Plate tectonics and geochemical composition of sandstones,” J. Geol. 91, 611–627 (1983).CrossRefGoogle Scholar
  7. M. R. Bhatia, “Rare earth element geochemistry of Australian Paleozoic graywackes and mud rocks: provenance and tectonic control,” Sediment Geol. 45, 97–113 (1985).CrossRefGoogle Scholar
  8. M. R. Bhatia, and K. A. W. Crook, “Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins,” Contrib Mineral Petrol. 92 (2), 181–193 (1986).CrossRefGoogle Scholar
  9. B. Bock, S. M. Mclennan, and G. N. Hanson, “Geochemistry and provenance of the middle Ordovician Austin glen member (Normanskill Formation) and the Taconian Orogeny in New England,” Sedimentology. 45, 635–655 (1998).CrossRefGoogle Scholar
  10. R. L. Cullers, “The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian- Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA,” Geochim Cosmochim Acta 58, 4955–4972 (1994).CrossRefGoogle Scholar
  11. R. L. Cullers and V. N. Podkovyrov, “Geochemistry of the Mesoproterozoic Lakhanda shale in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling,” Precambrian Res. 104, 77–93 (2000).CrossRefGoogle Scholar
  12. W. R. Dickinson, L. S. Beard, G. R. Brakenridge, J. L. Erjacec, R. C. Ferguson, K. F. Inman, R. A. Knepp, F. A. Lindberg, and P. T. Ryberg, “Provenance of North American Phanerozoic sandstones in relation to tectonic setting,” Geol. Soc. Am. Bull. 94, 222–235 (1983).CrossRefGoogle Scholar
  13. Y. S. Du, J. Zhu, S. Z. Gu, et al. “Sedimentary geochemistry of the Cambrian-Qrdovician cherts: implication on archipelagic ocean of the North Qilian orogenic belt,” Sci China Ser D-Earth Sci. 37, 1314–1329 (2007).Google Scholar
  14. Y. S. Du, J. Zhu, X. Han, and S. Gu, “From the back-arc to foreland basin Ordovivian-Devonian sedimentary basin and tectonic evolution in the North Qilian orognic belt,” Geol. Bull. China 23, 911–917 (2004).Google Scholar
  15. N. Etemad-Saeed, M. Hosseini-Barzi, and J. S. Armstrong- Altrin, “Petrography and geochemistry of clastic sedimentary rocks as evidences for provenance of the Lower Cambrian Lalun Formation, Posht-e-badam block, Central Iran,” J. Afr. Earth Sci. 61 (2), 142–159 (2011).CrossRefGoogle Scholar
  16. S. Fatima, and M. S. Khan, “Petrographic and geochemical characteristics of Mesoproterozoic Kumbalgarh clastic rocks, NW Indian shield: implications for provenance, tectonic setting, and crustal evolution,” Int. Geol. Rev. 54, 1113–1144 (2012).CrossRefGoogle Scholar
  17. C. M. Fedo, H. W. Nesbitt, and G. M. Young, “Unravelling the effects of potassium metamorphism in sedimentary rocks and potassium metamorphism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance,” Geology. 23, 921–924 (1995).CrossRefGoogle Scholar
  18. C. M. Fedo, K. Eriksson, and E. J. Krogstad, “Geochemistry of shales from the Archean (3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source area weathering,” Geochim Cosmochim Acta 60, 1751–1763 (1996).CrossRefGoogle Scholar
  19. Y. M. Feng and S. P. He, “Research for geology and geochemistry of several ophiolites on the North Qilian Mountains,” China. Acta Petrologica Sinica 11, 125–146 (1995).Google Scholar
  20. Y. M. Feng, and S. P. He, Tectonics and Orogenesis of Qilian Mountains (Geological Publishing House, Beijing, 1996) [in Chinese].Google Scholar
  21. P. A. Floye and B. E. Leveridge, “Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones,” J Geol. Soc. London 144, 531–542 (1987).CrossRefGoogle Scholar
  22. P. Friend, “Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits,” Earth Planet. Sci. Lett. 195 (1–2), 29–44 (2002).Google Scholar
  23. G. E. Gehrels, A. Yin, and X. F. Wang, “Detrital zircon geochronology of the northeastern Tibetan plateau,” Geol. Soc. Am. Bull. 115, 881–896 (2003).CrossRefGoogle Scholar
  24. E. G. Grosch, A. Bisnath, H. E. Frimmel, and W. S. Board, “Geochemistry and tectonic setting of mafic rocks in western Dronning Maud Land, East Antarctica: implications for the geodynamic evolution of the Proterozoic Maud Belt,” J. Geol. Soc. 164, 465–475 (2007).CrossRefGoogle Scholar
  25. X. X. Gu, J. M. Liu, M. H. Zheng, J. X. Tang, and L. Qi, “Provenance and tectonic setting of the Proterozoic turbidities in Hunan, South China: geochemical evidence,” J Sediment Res. 72 (3), 393–407 (2002).CrossRefGoogle Scholar
  26. J. Guo and H. Li, “Angular unconformity between the Huashishan Group and Huangzhong Group in the Eastern Mid-Qilian Massif: identification and implications,” Progress Precambrian Res. 22, 47–52 (1999).Google Scholar
  27. R. Hall, “Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations,” J. Asian Earth Sci. 20, 353–431 (2002).CrossRefGoogle Scholar
  28. M. M. Herron, “Geochemical classification of terrigenous sands and shales from core or log data,” J. Sediment Petrol. 58, 820–829 (1988).Google Scholar
  29. A. Hofmann, “The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: implications for tectonic, hydrothermal and surface processes during mid-Archaean times,” Preccambr. Res. 143, 23–49 (2005).CrossRefGoogle Scholar
  30. H. Junjie, L. Qi, F. Nianqiao, and Y. Jingyi, “Geochemistry characteristics of the Low Permian sedimentary rocks from central uplift zone, Qiangtang Basin, Tibet: insights into source-area weathering, provenance, recycling, and tectonic setting,” Arab J. Geosci. 8, 5373–5388 (2015).CrossRefGoogle Scholar
  31. T. Koralay, “Petrographic and geochemical characteristics of upper Miocene Tekkedag volcanics (Central Anatolia- Turkey),” Chem. Erde. 70, 335–351 (2010).CrossRefGoogle Scholar
  32. S. B. Kroonenberg, “Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments,” Proceedings of the 29th International Geological Congress, Part A, pp. 69–81 (1994).Google Scholar
  33. R. W. Le Maitre, “The chemical variability of some common igneous rocks,” J. Petrol. 17, 589–637 (1976).CrossRefGoogle Scholar
  34. M. J. Le-Bas, R. W. Le-Maitre, A. Streckeisen, and B. Zanettinal, “A chemical classification of volcanic rocks based on the total alkali-silica diagram,” J. Petrol. 27, 745–750 (1986).CrossRefGoogle Scholar
  35. C. Li, Y. Liu, B. Zhu, Y. Feng, and H. Wu, “Tectonic history of the Qinling and Qilian mountains,” in Papers on Geology for International Exchange. Vol. 1. Regional Geology and Geological Mechanics (Geological Publishing House, Beijing, 1978), pp. 174–187.Google Scholar
  36. W. Y. Li, Z. P. Guo, and W. Wang, “Caledonian convergent transformation and metallogenetic response in the North Qilian Mountains,” Geol Rev. 51, 120–127 (2005) [in Chinese].Google Scholar
  37. S. Liu, G. Liu, Y. Liu, Y. Zhou, F. Gong, and Y. Yan, “Geochemistry of Middle Oligocene–Pliocene sandstones from the Nanpu Sag, Bohai Bay Basin (Eastern China): implications for provenance, weathering, and tectonic setting,” Geochem. 41 (5), 359–378 (2007).CrossRefGoogle Scholar
  38. X. P. Long, C. Yuan, M. Sun, I. Safonova, W. J. Xiao, and Y. J. Wang, “Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in Junggar, NW China: insights into subduction-accretion processes in the southern Central Asian Orogenic Belt,” Gondwana Res. 21, 637–653 (2012).CrossRefGoogle Scholar
  39. J. Madhavaraju and S. Ramasamy, “Petrography and geochemistry of Late Maastrichtian–Early Paleocene sediments of Tiruchirapalli Cretaceous, Tamil Nadu-Paleoweathering and provenance implications,” J. Geol. Soc. India. 59, 133–142 (2002).Google Scholar
  40. A. V. Maslov, G. A. Mizens, V. N. Podkovyrov, E. Z. Gareev, A. A. Sorokin, Yu. N. Smironva, and T. M. Sokur, “Synorogenic psammites: major lithochemical features,” Lithol. Miner. Resour. 48 (1), 74–97 (2013).CrossRefGoogle Scholar
  41. A. V. Maslov, G. A. Mizens, V. N. Podkovyrov, A. D. Nozhkin, T. M. Sokur, A. I. Malinovskii, A. A. Sorokin, Yu. N. Smironva, E. Z. Gareev, N. V. Dmitrieva, M. T. Krupenin, and E. F. Letnikova, “Synorogenic clay rocks: specifics of bulk composition and paleotectonics,” Geochem. Int. 56 (6), 510–533 (2015).CrossRefGoogle Scholar
  42. A. V. Maslov, V. N. Podkovyrov, G. A. Mizens, A. D. Nozhkin, A. M. Fazliakhmetov, A. I. Malinovskii, A. K. Khudoley, L. N. Kotova, A. V. Kuptsova, E. Z. Gareev, and R. I. Zainullin, “Tectonic setting discrimination diagrams for terrigenous rocks: a comparison,” Geochem. Int. 54 (7), 569–583 (2016).CrossRefGoogle Scholar
  43. J. B. Maynard, R. Valloni, and H. Yu, “Composition of modern deep-sea sands from arc-related basins,” Geol. Soc. London, Sp. Publ. 10 (1), 551–561 (1982).CrossRefGoogle Scholar
  44. W. F. McDonough and S. Sun, “The composition of the Earth,” Chem Geol. 120, 223–253 (1995).CrossRefGoogle Scholar
  45. S. M. McLennan, S. Hemming, D. K. McDaniel, and G. N. Hanson, “Geochemical approaches to sedimentation, provenance, and tectonics,” in Processes Controlling the Composition of Clastic Sediments,” Ed. by M. J. Johnsson and A. Basu, Geol. Soc. America, Sp. Paper. 21–40 (1993).CrossRefGoogle Scholar
  46. S. M. Moosavirad, M. R. Janardhana, M. S. Sethumadhav, M. R. Moghadam, and M. Shankara, “Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: provenance, source weathering and tectonic setting,” Chem. Erde. 71, 279–288 (2011).CrossRefGoogle Scholar
  47. C. L. Mu, Q.Y. Wang, and X. P. Wang, “The lithofacies–palaeogeographic research and practice of orogenic belt: an example of Ordovician in Gansu province,” Acta Sedimentol. Sinica. 34 (1), 1–14 (2016).Google Scholar
  48. R. Nagarajan, D. Roy Priyadarsi, M. P. Jonathanm R. Lozano, F. L. Kessler, and M. V. Prasanna, “Geochemistry of Neogene sedimentary rocks from Borneo Basin, East Malaysia: paleo-weathering, provenance, and tectonic setting,” Chem Erde Geochem. 74 (1), 139–146 (2014).CrossRefGoogle Scholar
  49. R. Nagarajan, S. John, J. S. Armstrong-Altrin, and L. Franz, “Provenance and tectonic setting of Miocene siliciclastic sediments, Sibuti Formation, northwestern Borneo,” Arab J. Geosci. 8, 8549–8565 (2015).CrossRefGoogle Scholar
  50. H. W. Nesbitt and G. M. Young, “Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations,” Geochim Cosmochim Acta. 48 (7), 1523–1534 (1984).CrossRefGoogle Scholar
  51. H. W. Nesbitt, C. M. Fedo, and G. M. Young, “Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and muds,” J. Geol. 105, 173–191 (1997).CrossRefGoogle Scholar
  52. F. J. Pettijohn, P. E. Potter, and R. Siever, Sand and Sandstone (Springer, New York, 1987).CrossRefGoogle Scholar
  53. X. X. Qi, J. X. Zhang, H. B. Li, et al., “Geochronology of the dextral strike ductile shear zone in south margin of the Northern Qilian Mountains and its geological significance,” Earth Sci. Fron. 11, 469–479 (2004).Google Scholar
  54. M. J. Rahman, and S. Suzuki, “Geochemistry of sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh: implications for provenance, tectonic setting and weathering,” Geochem. J. 41, 415–428 (2007).CrossRefGoogle Scholar
  55. F. S. Ramadan and S. M. Zaid, “Provenance of recent sediments, along the Red Sea coast, Egypt,” Int. J. Acad. Res. 5 (2), 38–49 (2013).CrossRefGoogle Scholar
  56. B. P. Roser and R. J. Korsch, “Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio,” J. Geol. 94, 635–650 (1986).CrossRefGoogle Scholar
  57. B. P. Roser and R. J. Korsch, “Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data,” Chem. Geol. 67, 119–139 (1988).CrossRefGoogle Scholar
  58. B. P. Roser, R. A. Cooper, S. A. Nathan, and A. J. Tulloch, “Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terrains of the West Coast and Nelson, New Zealand,” N. Z. J. Geol. Geophys. 39, 1–16 (1996).CrossRefGoogle Scholar
  59. R. Rudnick and S. Gao, “Composition of the continental crust,” Treatise Geochem. 3, 1–64 (2003).Google Scholar
  60. E. Sobel and N. Arnaud, “A possible middle Paleozoic suture in the Altyn Tagh, NW China,” Tectonics 18, 64–74 (1999).CrossRefGoogle Scholar
  61. S. G. Song, J. S. Yang, J. G. Liu, C. Wu, R. Shi, and Z. Xu, “Petrology, geochemistry and isotopic ages of eclogites in the Dulan UHPM terrane, the North Qaidam, NW China,” Lithos. 70, 195–211 (2003).CrossRefGoogle Scholar
  62. L. J. Suttner and P. K. Dutta, “Alluvial sandstone composition and paleoclimate. I. Framework mineralogy,” J. Sediment. Petrol. 56, 329–345 (1986).Google Scholar
  63. L. J. Suttner, A. Basu, and G. H. Mack, “Climate and the origin of quartz arenites,” J. Sediment. Petrol. 51, 235–246 (1981).Google Scholar
  64. S. R. Taylor, “The application of trace element data to problems in petrology,” Phys. Chem. Earth. 6, 133–213 (1965).CrossRefGoogle Scholar
  65. S. R. Taylor and Mclennan, S. M. The Continental Crust: Its Composition and Evolution (Blackwell. Oxford, 1985).Google Scholar
  66. S. P. Verma and J. S. Armstrong-Altrin, “New multidimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins,” Chem. Geol. 355, 117–180 (2013).CrossRefGoogle Scholar
  67. Y. Wan, Z. Xu, J. Yang, and J. Zhang, “The Precambrian high-grade basement of the Qilian Terrane and neighboring areas: its ages and composition,” Acta Geoscientia Sinica. 24, 319–324 (2003).Google Scholar
  68. H. A. Wanas and M. M. Abuel-Hassan, “Paleosols of the upper Cretaceous–lower Tertiary Maghra Elbahari Formation cretaceous-lower tertiary maghra elbahari formation in the northeastern portion of the Eastern Desert, Egypt: their recognition and geological significance,” Sediment. Geol. 183, 243–259 (2006).CrossRefGoogle Scholar
  69. Q. Wang and X. Y. Liu, “Paleo-Oceanic crust of the Chilienshan region, Western China and its tectonic significance,” Chinese J. Geol. 1, 42–55 (1976).Google Scholar
  70. G. J. Weltje, X. D. Meijer, and P. L. De Boer, “Stratigraphic inversion of siliciclastic basin fills: a note on the distinction between supply signals resulting from tectonic and climatic forcing,” Basin Res. 10, 129–153 (1998).CrossRefGoogle Scholar
  71. N. M. White, M. Pringle, E. Garzanti, M. Bickle, Y. Najman, H. Chapman, and P. Friend, “Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits,” Earth Planet. Sci. Lett. 195 (1–2), 29–44 (2002).CrossRefGoogle Scholar
  72. N. M. White, M. Pringle, E. Garzanti, M. Bickle, Y. Najman, H. Chapman, E. G. Grosch, A. Bisnath, H. E. Frimmel, and W. S. Board, “Geochemistry and tectonic setting of mafic rocks in western Dronning Maud Land, East Antarctica: implications for the geodynamic evolution of the Proterozoic Maud Belt,” J. Geol. Soc. 164, 465–475 (2007).CrossRefGoogle Scholar
  73. L. Q. Xia, Z. C. Xia, and X. Y. Xu, “Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China,” Geol. Soc. Am. Bull. 115, 1510–1522 (2003).CrossRefGoogle Scholar
  74. L. Q. Xia, Z. C. Xia, and X. Y. Xu, Origin of Marine Volcanic Rocks in North Qilian Mountains (Geological Publishing House, Beijing, 1996) [in Chinese].Google Scholar
  75. X. C. Xiao, G. M. Chen, and Z. Z. Zhu, “A Preliminary study on the tectonics of ancient ophiolites in the Qilian Mountain, Northwest China,” Acta Geol. Sinica. 54, 278–295 (1978).Google Scholar
  76. Y. J. Xu, Y. S. Du, and J. H. Yang, “Sedimentary geochemistry and provenance of the Lower and Middle Devonian Laojunshan Formation, the North Qilian Orogenic Belt,” Science China 53 (3), 356–367 (2010).CrossRefGoogle Scholar
  77. Z. Xu, H. Xu, J. Zhang, H. Li, et al., “The Zhoulangshan Caledonian subduction complex in the northern Qilian Mountains and its dynamics,” Acta Geol. Sinica 68, 1–15 (1994).Google Scholar
  78. Z. Yan, J. W. Xiao, C. Liu, et al., “Detrital composition of the Laojunshan Conglomerate and tectonic settings of its source rocks in the Qilian Mountains,” Geol. Bull. China. 25, 83–98 (2007).Google Scholar
  79. Samir M. Zaid, “Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: implication for provenance, weathering and tectonic setting,” J. Afr. Earth Sci. 102, 1–17 (2015).CrossRefGoogle Scholar
  80. Q. Zhang, X. M. Sun, and D. J. Zhou, “The characteristics of North Qilian ophiolites, forming settings and their tectonic significance,” Adv. Earth Sci. 12, 366–393 (1997) [in Chinese].Google Scholar
  81. Y. L. Zhang, Z. Q. Wang, Z. Yan, and T. Wan, “Tectonic setting of neoproterozoic beiyixi formation in quruqtagh area, Xinjiang: evidence from geochemistry of clastic rocks,” Acta Petrol Sin. 27, 1785–1796 (2011).Google Scholar
  82. S. Zhao, “Geological features and evolution of the Qilian orogenic belt,” Acta Geol. Gansu. 5, 16–28 (1996).Google Scholar
  83. G. Zuo and J. Liu, “The evolution of tectonic of early Paleozoic in north Qilian range,” China. Scientia Geologica SINICA. 1, 14–24 (1987).Google Scholar
  84. G. C. Zuo and H. Q. Wu, “A bisubduction-collision orogenic model of Early-Paleozoic in the middle part of North Qilian area,” Adv. Earth Sci. 12, 315–322 (1997) [in Chinese].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Qian Hou
    • 1
  • Chuanlong Mou
    • 2
    • 3
  • Qiyu Wang
    • 1
    • 3
  • Zhiyuan Tan
    • 4
  • Xiangying Ge
    • 3
  • Xiuping Wang
    • 3
  1. 1.Shandong University of Science and TechnologyShandong QingdaoPR China
  2. 2.Key Laboratory of Sedimentary Basins and Oil and Gas Resources of Ministry of Land and ResourcesSichuan ChengduPR China
  3. 3.Chengdu Institute of Geology and Mineral ResourcesChina Geological SurveySichuan ChengduPR China
  4. 4.280 Research InstituteThe Nuclear Industry Southwest Institute of GeologySichuan GuanghanPR China

Personalised recommendations