Skip to main content
Log in

Geochemistry of Sandstones from the Silurian Hanxia Formation, North Qilian Belt, China: Implication for Provenance, Weathering and Tectonic Setting

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The North Qilian orogenic belt is the key to figure out the evolution and assembly of Asia. The Upper Silurian Hanxia Formation which is deposited in the north area of North Qilian Orogenic Belt is of utmost important to reveal the architecture and orogenic process of the North Qilian belt. So provenance analysis of the Hanxia Formation is of significance to reveal not only that the tectonic evolution of the central orogenic belt China, but also that Paleozoic Asia plate reconstruction. The ratios of elements and some discrimination diagrams based on geochemistry indicate that felsic rocks constitute their main source rocks. The chemical index of alteration is less than 80, indicating that the source rocks are relatively fresh and of low maturity. On the Th/Sc versus Zr/Sc scatter plot, samples from Hanxia Formation occur along the magmatic compositional variation trend of rocks, indicating that the rocks did not undergo obvious sedimentary sorting and recycling. The major and trace elements discrimination diagrams imply that Hanxia Formation rocks were derived from continental island arc. Recent studies show that the North China plate subducted southwards and produced subduction-related arc magmatism along the southern margin of the North Qilian Terrane during the Silurian. Therefore, we infer that in the late Silurian period the subduction-related arc became accreted to the Central Qilian terrane to the south, forming a composite continental arc, and the North Qilian belt accumulated in a fore-arc basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. S. Armstrong-Altrin, Y. I. Lee, S. P. Verma, and S. Ramasamy, “Geochemistry of sandstones from the upper Miocene Kudankulam formation, Southern Indian: implications for provenance, weathering, and tectonic setting,” J. Sed Res. 74 (2), 285–297 (2004).

    Article  Google Scholar 

  • J. S. Armstrong-Altrin and S. P. Verma, “Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic setting,” Sediment. Geol. 177, 115–129 (2005).

    Article  Google Scholar 

  • J. S. Armstrong-Altrin, R. Nagarajan, J. Madhacaraju, L. Rosalez-Hoz, Y. II. Lee, V. Balaram, A. Cruz-Martinez, and G. Avila-Ramirez, “Geochemistry of the Jurassic and upper cretaceous shales from the Molango region, Hidalgo, Eastern Mexico: implications of source-area weathering, provenance, and tectonic setting,” CR Geosci. 345, 185–202 (2013).

    Article  Google Scholar 

  • J. S. Armstrong-Altrin, R. Nagarajan, Y. I. Lee, and J. J. Kasper-Zubillaga, “Geochemistry of sands along the San Nicolas and San Carlos beaches, Gulf of California, Mexico: implication for provenance,” Turk J. Earth Sci. 23, 533–558 (2014).

    Article  Google Scholar 

  • D. Bakkiaraj, R. Nagendra, and J. S. Armstrong-Altrin, “Geochemistry of sandstones from the upper cretaceous Sillakkudi formation, Gauvery Basin, southern India: implication for provenance,” J. Geol. Soc. India 76, 453–467 (2010).

    Article  Google Scholar 

  • M. R. Bhatia, “Plate tectonics and geochemical composition of sandstones,” J. Geol. 91, 611–627 (1983).

    Article  Google Scholar 

  • M. R. Bhatia, “Rare earth element geochemistry of Australian Paleozoic graywackes and mud rocks: provenance and tectonic control,” Sediment Geol. 45, 97–113 (1985).

    Article  Google Scholar 

  • M. R. Bhatia, and K. A. W. Crook, “Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins,” Contrib Mineral Petrol. 92 (2), 181–193 (1986).

    Article  Google Scholar 

  • B. Bock, S. M. Mclennan, and G. N. Hanson, “Geochemistry and provenance of the middle Ordovician Austin glen member (Normanskill Formation) and the Taconian Orogeny in New England,” Sedimentology. 45, 635–655 (1998).

    Article  Google Scholar 

  • R. L. Cullers, “The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian- Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA,” Geochim Cosmochim Acta 58, 4955–4972 (1994).

    Article  Google Scholar 

  • R. L. Cullers and V. N. Podkovyrov, “Geochemistry of the Mesoproterozoic Lakhanda shale in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling,” Precambrian Res. 104, 77–93 (2000).

    Article  Google Scholar 

  • W. R. Dickinson, L. S. Beard, G. R. Brakenridge, J. L. Erjacec, R. C. Ferguson, K. F. Inman, R. A. Knepp, F. A. Lindberg, and P. T. Ryberg, “Provenance of North American Phanerozoic sandstones in relation to tectonic setting,” Geol. Soc. Am. Bull. 94, 222–235 (1983).

    Article  Google Scholar 

  • Y. S. Du, J. Zhu, S. Z. Gu, et al. “Sedimentary geochemistry of the Cambrian-Qrdovician cherts: implication on archipelagic ocean of the North Qilian orogenic belt,” Sci China Ser D-Earth Sci. 37, 1314–1329 (2007).

    Google Scholar 

  • Y. S. Du, J. Zhu, X. Han, and S. Gu, “From the back-arc to foreland basin Ordovivian-Devonian sedimentary basin and tectonic evolution in the North Qilian orognic belt,” Geol. Bull. China 23, 911–917 (2004).

    Google Scholar 

  • N. Etemad-Saeed, M. Hosseini-Barzi, and J. S. Armstrong- Altrin, “Petrography and geochemistry of clastic sedimentary rocks as evidences for provenance of the Lower Cambrian Lalun Formation, Posht-e-badam block, Central Iran,” J. Afr. Earth Sci. 61 (2), 142–159 (2011).

    Article  Google Scholar 

  • S. Fatima, and M. S. Khan, “Petrographic and geochemical characteristics of Mesoproterozoic Kumbalgarh clastic rocks, NW Indian shield: implications for provenance, tectonic setting, and crustal evolution,” Int. Geol. Rev. 54, 1113–1144 (2012).

    Article  Google Scholar 

  • C. M. Fedo, H. W. Nesbitt, and G. M. Young, “Unravelling the effects of potassium metamorphism in sedimentary rocks and potassium metamorphism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance,” Geology. 23, 921–924 (1995).

    Article  Google Scholar 

  • C. M. Fedo, K. Eriksson, and E. J. Krogstad, “Geochemistry of shales from the Archean (3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source area weathering,” Geochim Cosmochim Acta 60, 1751–1763 (1996).

    Article  Google Scholar 

  • Y. M. Feng and S. P. He, “Research for geology and geochemistry of several ophiolites on the North Qilian Mountains,” China. Acta Petrologica Sinica 11, 125–146 (1995).

    Google Scholar 

  • Y. M. Feng, and S. P. He, Tectonics and Orogenesis of Qilian Mountains (Geological Publishing House, Beijing, 1996) [in Chinese].

    Google Scholar 

  • P. A. Floye and B. E. Leveridge, “Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones,” J Geol. Soc. London 144, 531–542 (1987).

    Article  Google Scholar 

  • P. Friend, “Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits,” Earth Planet. Sci. Lett. 195 (1–2), 29–44 (2002).

    Google Scholar 

  • G. E. Gehrels, A. Yin, and X. F. Wang, “Detrital zircon geochronology of the northeastern Tibetan plateau,” Geol. Soc. Am. Bull. 115, 881–896 (2003).

    Article  Google Scholar 

  • E. G. Grosch, A. Bisnath, H. E. Frimmel, and W. S. Board, “Geochemistry and tectonic setting of mafic rocks in western Dronning Maud Land, East Antarctica: implications for the geodynamic evolution of the Proterozoic Maud Belt,” J. Geol. Soc. 164, 465–475 (2007).

    Article  Google Scholar 

  • X. X. Gu, J. M. Liu, M. H. Zheng, J. X. Tang, and L. Qi, “Provenance and tectonic setting of the Proterozoic turbidities in Hunan, South China: geochemical evidence,” J Sediment Res. 72 (3), 393–407 (2002).

    Article  Google Scholar 

  • J. Guo and H. Li, “Angular unconformity between the Huashishan Group and Huangzhong Group in the Eastern Mid-Qilian Massif: identification and implications,” Progress Precambrian Res. 22, 47–52 (1999).

    Google Scholar 

  • R. Hall, “Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations,” J. Asian Earth Sci. 20, 353–431 (2002).

    Article  Google Scholar 

  • M. M. Herron, “Geochemical classification of terrigenous sands and shales from core or log data,” J. Sediment Petrol. 58, 820–829 (1988).

    Google Scholar 

  • A. Hofmann, “The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: implications for tectonic, hydrothermal and surface processes during mid-Archaean times,” Preccambr. Res. 143, 23–49 (2005).

    Article  Google Scholar 

  • H. Junjie, L. Qi, F. Nianqiao, and Y. Jingyi, “Geochemistry characteristics of the Low Permian sedimentary rocks from central uplift zone, Qiangtang Basin, Tibet: insights into source-area weathering, provenance, recycling, and tectonic setting,” Arab J. Geosci. 8, 5373–5388 (2015).

    Article  Google Scholar 

  • T. Koralay, “Petrographic and geochemical characteristics of upper Miocene Tekkedag volcanics (Central Anatolia- Turkey),” Chem. Erde. 70, 335–351 (2010).

    Article  Google Scholar 

  • S. B. Kroonenberg, “Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments,” Proceedings of the 29th International Geological Congress, Part A, pp. 69–81 (1994).

    Google Scholar 

  • R. W. Le Maitre, “The chemical variability of some common igneous rocks,” J. Petrol. 17, 589–637 (1976).

    Article  Google Scholar 

  • M. J. Le-Bas, R. W. Le-Maitre, A. Streckeisen, and B. Zanettinal, “A chemical classification of volcanic rocks based on the total alkali-silica diagram,” J. Petrol. 27, 745–750 (1986).

    Article  Google Scholar 

  • C. Li, Y. Liu, B. Zhu, Y. Feng, and H. Wu, “Tectonic history of the Qinling and Qilian mountains,” in Papers on Geology for International Exchange. Vol. 1. Regional Geology and Geological Mechanics (Geological Publishing House, Beijing, 1978), pp. 174–187.

    Google Scholar 

  • W. Y. Li, Z. P. Guo, and W. Wang, “Caledonian convergent transformation and metallogenetic response in the North Qilian Mountains,” Geol Rev. 51, 120–127 (2005) [in Chinese].

    Google Scholar 

  • S. Liu, G. Liu, Y. Liu, Y. Zhou, F. Gong, and Y. Yan, “Geochemistry of Middle Oligocene–Pliocene sandstones from the Nanpu Sag, Bohai Bay Basin (Eastern China): implications for provenance, weathering, and tectonic setting,” Geochem. 41 (5), 359–378 (2007).

    Article  Google Scholar 

  • X. P. Long, C. Yuan, M. Sun, I. Safonova, W. J. Xiao, and Y. J. Wang, “Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in Junggar, NW China: insights into subduction-accretion processes in the southern Central Asian Orogenic Belt,” Gondwana Res. 21, 637–653 (2012).

    Article  Google Scholar 

  • J. Madhavaraju and S. Ramasamy, “Petrography and geochemistry of Late Maastrichtian–Early Paleocene sediments of Tiruchirapalli Cretaceous, Tamil Nadu-Paleoweathering and provenance implications,” J. Geol. Soc. India. 59, 133–142 (2002).

    Google Scholar 

  • A. V. Maslov, G. A. Mizens, V. N. Podkovyrov, E. Z. Gareev, A. A. Sorokin, Yu. N. Smironva, and T. M. Sokur, “Synorogenic psammites: major lithochemical features,” Lithol. Miner. Resour. 48 (1), 74–97 (2013).

    Article  Google Scholar 

  • A. V. Maslov, G. A. Mizens, V. N. Podkovyrov, A. D. Nozhkin, T. M. Sokur, A. I. Malinovskii, A. A. Sorokin, Yu. N. Smironva, E. Z. Gareev, N. V. Dmitrieva, M. T. Krupenin, and E. F. Letnikova, “Synorogenic clay rocks: specifics of bulk composition and paleotectonics,” Geochem. Int. 56 (6), 510–533 (2015).

    Article  Google Scholar 

  • A. V. Maslov, V. N. Podkovyrov, G. A. Mizens, A. D. Nozhkin, A. M. Fazliakhmetov, A. I. Malinovskii, A. K. Khudoley, L. N. Kotova, A. V. Kuptsova, E. Z. Gareev, and R. I. Zainullin, “Tectonic setting discrimination diagrams for terrigenous rocks: a comparison,” Geochem. Int. 54 (7), 569–583 (2016).

    Article  Google Scholar 

  • J. B. Maynard, R. Valloni, and H. Yu, “Composition of modern deep-sea sands from arc-related basins,” Geol. Soc. London, Sp. Publ. 10 (1), 551–561 (1982).

    Article  Google Scholar 

  • W. F. McDonough and S. Sun, “The composition of the Earth,” Chem Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  • S. M. McLennan, S. Hemming, D. K. McDaniel, and G. N. Hanson, “Geochemical approaches to sedimentation, provenance, and tectonics,” in Processes Controlling the Composition of Clastic Sediments,” Ed. by M. J. Johnsson and A. Basu, Geol. Soc. America, Sp. Paper. 21–40 (1993).

    Chapter  Google Scholar 

  • S. M. Moosavirad, M. R. Janardhana, M. S. Sethumadhav, M. R. Moghadam, and M. Shankara, “Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: provenance, source weathering and tectonic setting,” Chem. Erde. 71, 279–288 (2011).

    Article  Google Scholar 

  • C. L. Mu, Q.Y. Wang, and X. P. Wang, “The lithofacies–palaeogeographic research and practice of orogenic belt: an example of Ordovician in Gansu province,” Acta Sedimentol. Sinica. 34 (1), 1–14 (2016).

    Google Scholar 

  • R. Nagarajan, D. Roy Priyadarsi, M. P. Jonathanm R. Lozano, F. L. Kessler, and M. V. Prasanna, “Geochemistry of Neogene sedimentary rocks from Borneo Basin, East Malaysia: paleo-weathering, provenance, and tectonic setting,” Chem Erde Geochem. 74 (1), 139–146 (2014).

    Article  Google Scholar 

  • R. Nagarajan, S. John, J. S. Armstrong-Altrin, and L. Franz, “Provenance and tectonic setting of Miocene siliciclastic sediments, Sibuti Formation, northwestern Borneo,” Arab J. Geosci. 8, 8549–8565 (2015).

    Article  Google Scholar 

  • H. W. Nesbitt and G. M. Young, “Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations,” Geochim Cosmochim Acta. 48 (7), 1523–1534 (1984).

    Article  Google Scholar 

  • H. W. Nesbitt, C. M. Fedo, and G. M. Young, “Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and muds,” J. Geol. 105, 173–191 (1997).

    Article  Google Scholar 

  • F. J. Pettijohn, P. E. Potter, and R. Siever, Sand and Sandstone (Springer, New York, 1987).

    Book  Google Scholar 

  • X. X. Qi, J. X. Zhang, H. B. Li, et al., “Geochronology of the dextral strike ductile shear zone in south margin of the Northern Qilian Mountains and its geological significance,” Earth Sci. Fron. 11, 469–479 (2004).

    Google Scholar 

  • M. J. Rahman, and S. Suzuki, “Geochemistry of sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh: implications for provenance, tectonic setting and weathering,” Geochem. J. 41, 415–428 (2007).

    Article  Google Scholar 

  • F. S. Ramadan and S. M. Zaid, “Provenance of recent sediments, along the Red Sea coast, Egypt,” Int. J. Acad. Res. 5 (2), 38–49 (2013).

    Article  Google Scholar 

  • B. P. Roser and R. J. Korsch, “Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio,” J. Geol. 94, 635–650 (1986).

    Article  Google Scholar 

  • B. P. Roser and R. J. Korsch, “Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data,” Chem. Geol. 67, 119–139 (1988).

    Article  Google Scholar 

  • B. P. Roser, R. A. Cooper, S. A. Nathan, and A. J. Tulloch, “Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terrains of the West Coast and Nelson, New Zealand,” N. Z. J. Geol. Geophys. 39, 1–16 (1996).

    Article  Google Scholar 

  • R. Rudnick and S. Gao, “Composition of the continental crust,” Treatise Geochem. 3, 1–64 (2003).

    Google Scholar 

  • E. Sobel and N. Arnaud, “A possible middle Paleozoic suture in the Altyn Tagh, NW China,” Tectonics 18, 64–74 (1999).

    Article  Google Scholar 

  • S. G. Song, J. S. Yang, J. G. Liu, C. Wu, R. Shi, and Z. Xu, “Petrology, geochemistry and isotopic ages of eclogites in the Dulan UHPM terrane, the North Qaidam, NW China,” Lithos. 70, 195–211 (2003).

    Article  Google Scholar 

  • L. J. Suttner and P. K. Dutta, “Alluvial sandstone composition and paleoclimate. I. Framework mineralogy,” J. Sediment. Petrol. 56, 329–345 (1986).

    Google Scholar 

  • L. J. Suttner, A. Basu, and G. H. Mack, “Climate and the origin of quartz arenites,” J. Sediment. Petrol. 51, 235–246 (1981).

    Google Scholar 

  • S. R. Taylor, “The application of trace element data to problems in petrology,” Phys. Chem. Earth. 6, 133–213 (1965).

    Article  Google Scholar 

  • S. R. Taylor and Mclennan, S. M. The Continental Crust: Its Composition and Evolution (Blackwell. Oxford, 1985).

    Google Scholar 

  • S. P. Verma and J. S. Armstrong-Altrin, “New multidimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins,” Chem. Geol. 355, 117–180 (2013).

    Article  Google Scholar 

  • Y. Wan, Z. Xu, J. Yang, and J. Zhang, “The Precambrian high-grade basement of the Qilian Terrane and neighboring areas: its ages and composition,” Acta Geoscientia Sinica. 24, 319–324 (2003).

    Google Scholar 

  • H. A. Wanas and M. M. Abuel-Hassan, “Paleosols of the upper Cretaceous–lower Tertiary Maghra Elbahari Formation cretaceous-lower tertiary maghra elbahari formation in the northeastern portion of the Eastern Desert, Egypt: their recognition and geological significance,” Sediment. Geol. 183, 243–259 (2006).

    Article  Google Scholar 

  • Q. Wang and X. Y. Liu, “Paleo-Oceanic crust of the Chilienshan region, Western China and its tectonic significance,” Chinese J. Geol. 1, 42–55 (1976).

    Google Scholar 

  • G. J. Weltje, X. D. Meijer, and P. L. De Boer, “Stratigraphic inversion of siliciclastic basin fills: a note on the distinction between supply signals resulting from tectonic and climatic forcing,” Basin Res. 10, 129–153 (1998).

    Article  Google Scholar 

  • N. M. White, M. Pringle, E. Garzanti, M. Bickle, Y. Najman, H. Chapman, and P. Friend, “Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits,” Earth Planet. Sci. Lett. 195 (1–2), 29–44 (2002).

    Article  Google Scholar 

  • N. M. White, M. Pringle, E. Garzanti, M. Bickle, Y. Najman, H. Chapman, E. G. Grosch, A. Bisnath, H. E. Frimmel, and W. S. Board, “Geochemistry and tectonic setting of mafic rocks in western Dronning Maud Land, East Antarctica: implications for the geodynamic evolution of the Proterozoic Maud Belt,” J. Geol. Soc. 164, 465–475 (2007).

    Article  Google Scholar 

  • L. Q. Xia, Z. C. Xia, and X. Y. Xu, “Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China,” Geol. Soc. Am. Bull. 115, 1510–1522 (2003).

    Article  Google Scholar 

  • L. Q. Xia, Z. C. Xia, and X. Y. Xu, Origin of Marine Volcanic Rocks in North Qilian Mountains (Geological Publishing House, Beijing, 1996) [in Chinese].

    Google Scholar 

  • X. C. Xiao, G. M. Chen, and Z. Z. Zhu, “A Preliminary study on the tectonics of ancient ophiolites in the Qilian Mountain, Northwest China,” Acta Geol. Sinica. 54, 278–295 (1978).

    Google Scholar 

  • Y. J. Xu, Y. S. Du, and J. H. Yang, “Sedimentary geochemistry and provenance of the Lower and Middle Devonian Laojunshan Formation, the North Qilian Orogenic Belt,” Science China 53 (3), 356–367 (2010).

    Article  Google Scholar 

  • Z. Xu, H. Xu, J. Zhang, H. Li, et al., “The Zhoulangshan Caledonian subduction complex in the northern Qilian Mountains and its dynamics,” Acta Geol. Sinica 68, 1–15 (1994).

    Google Scholar 

  • Z. Yan, J. W. Xiao, C. Liu, et al., “Detrital composition of the Laojunshan Conglomerate and tectonic settings of its source rocks in the Qilian Mountains,” Geol. Bull. China. 25, 83–98 (2007).

    Google Scholar 

  • Samir M. Zaid, “Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: implication for provenance, weathering and tectonic setting,” J. Afr. Earth Sci. 102, 1–17 (2015).

    Article  Google Scholar 

  • Q. Zhang, X. M. Sun, and D. J. Zhou, “The characteristics of North Qilian ophiolites, forming settings and their tectonic significance,” Adv. Earth Sci. 12, 366–393 (1997) [in Chinese].

    Google Scholar 

  • Y. L. Zhang, Z. Q. Wang, Z. Yan, and T. Wan, “Tectonic setting of neoproterozoic beiyixi formation in quruqtagh area, Xinjiang: evidence from geochemistry of clastic rocks,” Acta Petrol Sin. 27, 1785–1796 (2011).

    Google Scholar 

  • S. Zhao, “Geological features and evolution of the Qilian orogenic belt,” Acta Geol. Gansu. 5, 16–28 (1996).

    Google Scholar 

  • G. Zuo and J. Liu, “The evolution of tectonic of early Paleozoic in north Qilian range,” China. Scientia Geologica SINICA. 1, 14–24 (1987).

    Google Scholar 

  • G. C. Zuo and H. Q. Wu, “A bisubduction-collision orogenic model of Early-Paleozoic in the middle part of North Qilian area,” Adv. Earth Sci. 12, 315–322 (1997) [in Chinese].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanlong Mou.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Q., Mou, C., Wang, Q. et al. Geochemistry of Sandstones from the Silurian Hanxia Formation, North Qilian Belt, China: Implication for Provenance, Weathering and Tectonic Setting. Geochem. Int. 56, 362–377 (2018). https://doi.org/10.1134/S0016702918040092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918040092

Keywords

Navigation