Geochemistry International

, Volume 56, Issue 4, pp 283–291 | Cite as

Carbonate–Silicate–Sulfide Polyphase Inclusion in Diamond from the Komsomolskaya Kimberlite Pipe, Yakutia

  • A. M. Logvinova
  • R. Wirth
  • D. A. Zedgenizov
  • L. A. Taylor


An aragonite inclusion in natural diamond was identified using techniques of transmission electron microscopy, electron microdiffraction, and microprobe analysis. The inclusion is hosted in a colorless octahedral diamond crystal from the Komslomolskaya pipe in Yakutia. The diamond crystal shows a zoned distribution of its admixtures and defects. The structure parameters of the inclusion (∠[001]/[201] = 66° and certain lattice spacings) correspond to the calculated parameters of the orthorhombic unit cell of a Ca carbonate polymorph. The aragonite inclusion contains admixtures of MgO (0.81), MnO (0.58), and FeO (0.13 wt %). The find of a syngenetic aragonite inclusion in diamond is unique and proves that diamond can be formed in carbonatized mantle peridotite at depths of at least 300 km. The inclusion hosts identifiable microphases of Ni-rich sulfides (37–41 wt % Ni), titanite, hydrous silicate, magnetite, and fluid. This association indicates that the diamond and aragonite crystallized from a carbonate–silicate–sulfide melt or highdensity fluid.


aragonite diamond mantle carbonates sulfide fluid polyphase inclusions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S. M. Antao and I. Hassan, “Orthorhombic structure of CaCO3, SrCO3, PbCO3 and BaCO3: linear structural trends,” Can. Mineral. 47 (5), pp. 1245–1255 (2009).CrossRefGoogle Scholar
  2. F. E. Brenker, C. Vollmer, L. Vincze, B. Vekemans, A. Szymanski, K. Janssens, I. Szaloki, L. Nasdala, W. Joswig, and F. Kaminsky, “Carbonates from the lower part of transition zone or even the lower mantle,” Earth Planet. Sci. Lett. 260, 1–9 (2007).CrossRefGoogle Scholar
  3. G. P. Bulanova and L. P. Pavlova, “tAssemblage of magnetite peridotite in diamond from the Mir Pipe,” Dokl. Akad. Nauk SSSR 295 (6), 1452-1456.Google Scholar
  4. A. Buob, R. W. Luth, M. W. Schmidt, and P. Ulmer, “Experiments on CaCO3–MgCO3 solid solutions at high pressure and temperature,” Am. Mineral. 91 (2-3), 435–440 (2006).CrossRefGoogle Scholar
  5. J. B. Dawson, “A review of the geology of kimberlite,” in Ultramafic and Related Rocks, Ed. by P. J. Wyllie (Wiley, New York, 1967), pp. 269–278.Google Scholar
  6. E. S. Efimova, N. V. Sobolev, and L. N. Pospelova, “Sulfide inclusions in diamonds and peculiarities of their paragenesis, Zap. Vsesoyuz. Mineral. O-va 112 (3), 300–310 (1983).Google Scholar
  7. V. K. Garanin and G. P. Kudryavtseva, “Mineralogy of diamond with inclusions from Yakutian kimberlites,” Izv. Vyssh. Uchebn. Zaved. Geol. Razvedka, No. 2, 48–56 (1991).Google Scholar
  8. B. Harte, “Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones,” Mineral. Mag. 74 (2), 189–215 (2010).CrossRefGoogle Scholar
  9. W. Joswig, T. Stachel, J. W. Harris, W. H. Baur, and G. P. Brey, “New Ca-silicate inclusions in diamonds–tracers from the lower mantle,” Earth Planet. Sci. Lett. 173 (1), 1–6 (1999).CrossRefGoogle Scholar
  10. F. V. Kaminsky, O. D. Zakharchenko, R. M. Davies, W. L. Griffin, G. K. Khachatryan-Blinova, and A. A. Shiryaev, “Superdeep diamonds from the Juina area, Mato Grosso State, Brazil,” Contrib. Mineral. Petrol. 140, 734–753 (2001).CrossRefGoogle Scholar
  11. F. V. Kaminsky R. Wirth, and A. Schreiber, “Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association,” Can. Mineral. 51 (5), 669–688 (2013).CrossRefGoogle Scholar
  12. D. M. Kerrick and J. A. D. Connolly “Subduction of ophicarbonates and recycling of CO2 and H2O,” Geology 26 (4), 375–378 (1998).CrossRefGoogle Scholar
  13. O. Klein-BenDavid, D. G. Pearson, G. M. Nowell, C. Ottley, J. C. R. McNeill, A. Logvinova, and N. Sobolev, “The sources and time-integrated evolution of diamond-forming fluids–Trace elements and isotopic evidence,” Geochim. Cosmochim. Acta, 125, 146–169 (2014).CrossRefGoogle Scholar
  14. O. Klein-BenDavid, A. M. Logvinova, M. Schrauder, Z. V. Spetius, Y. Weiss, E. H. Hauri, F. V. Kaminsky, N. V. Sobolev, and O. Navon, “High-Mg carbonatitic microinclusions in some Yakutian diamonds- a new type of diamond-forming fluid,” Lithos 112S, 648–659 (2009).CrossRefGoogle Scholar
  15. O. Klein-BenDavid, E. S. Izraeli, E. Hauri, and O. Navon “Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids,” Geochim. Cosmochim. Acta 71, 723–724 (2007).CrossRefGoogle Scholar
  16. I. Leost, T. Stachel, G. P. Brey, J. W. Harris, and I. D. Ryabchikov, “Diamond formation and source carbonation: mineral associations in diamonds from Namibia,” Contrib. Mineral. Petrol. 145 (1), 15–24 (2003).CrossRefGoogle Scholar
  17. K. D. Litasov and E. Ohtani, “Solidus and phase relations of carbonated peridotite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to the lower mantle depths,” Phys. Earth Planet. Inter. 177, 46–58 (2009).CrossRefGoogle Scholar
  18. K. D. Litasov and E. Ohtani, “The solidus of carbonated eclogite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to 32 GPa and carbonatite liquid in the deep mantle,” Earth Planet. Sci. Lett. 295, 115–126 (2010).CrossRefGoogle Scholar
  19. K. D. Litasov, A. F. Shatskiy, P. N. Gavryushkin, E. Altyna, A. E. Bekhtenova, P. I. Dorogokupets, S. Boris, B. S. Danilov, Yu. Higo, T. Abdirash, A.T. Akilbekov, M. Talgat, and T. M. Inerbaev, “P-V-T equation of state of CaCO3 aragonite to 29 GPa and 1673 K: in situ X-ray diffraction study,” Phys. Earth Planet. Inter. 265, 82–91 (2017).CrossRefGoogle Scholar
  20. Yu. A. Litvin, V. Yu. Litvin, and A. A. Kadik, “Experimental characterization of diamond crystallization in melts of mantle silicate–carbonate–carbon systems at 7.0–8.5 GPa, Geochem. Int. (6), 531–553 (2008).CrossRefGoogle Scholar
  21. A. Logvinova, R. Wirth, E. Fedorova, and N. Sobolev, “Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation,” Eur. J. Mineral. 20, 317–331 (2008).CrossRefGoogle Scholar
  22. A. M. Logvinova, R. Wirth, A. A. Tomilenko, V. P. Afanas’ev, and N. V. Sobolev, “The phase composition of crystal-fluid nanoinclusions in alluvial diamonds in the northeastern Siberian platform,” Russ. Geol. Geophys. 52 (11), 1286–1297 (2011).CrossRefGoogle Scholar
  23. R. W. Luth, Experimental determination of the reaction aragonite plus magnesite–dolomite at 5 to 9 GPa,” Contrib. Mineral. Petrol. 141 (2), 222–232 (2001).CrossRefGoogle Scholar
  24. I. Martinez, J. Zhang, and R. J. Reeder, “In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature: evidence for dolomite breakdown to aragonite and magnesite,” Am. Mineral. 81, 611–624 (1996).CrossRefGoogle Scholar
  25. O. Navon, “High internal-pressures in diamond fluid inclusions determined by infrared absorbtion,” Nature, 353, 746–748 (1991).CrossRefGoogle Scholar
  26. S. Ono, T. Kikegawa, Y. Ohishi, and J. Tsuchiya, “Postaragonite phase transformation in CaCO3 at 40 GPa,” Am. Mineral. 90, 667–671 (2005).CrossRefGoogle Scholar
  27. S. Ono, T. Kikegawa, and Y. Ohishi, “High-pressure transition of CaCO3,” Am. Mineral 92, 1246–1249 (2007).CrossRefGoogle Scholar
  28. M. Schrauder and O. Navon, “Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana,” Geochim. Cosmochim. Acta 52, 761–771 (1994).CrossRefGoogle Scholar
  29. V. S. Shatsky, D. A. Zedgenizov, A. L. Ragozin, and V. V. Kalinina, “Carbon isotopes and nitrogen contents in placer diamonds from the NE Siberian craton: implications for diamond origins,” Eur. J. Mineral. 26, 41–52 (2014).CrossRefGoogle Scholar
  30. N. V. Sobolev, F. V. Kaminsky, W. L. Griffin, E. S. Yefimova, T. T. Win, C. G. Ryan, and A. I. Botkunov, “Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia,” Lithos 39, 135–157 (1997).CrossRefGoogle Scholar
  31. N. V. Sobolev, A. M. Logvinova, D. A. Zedgenizov, Y. V. Seryotkin, E. S. Yefimova, C. Floss, and L. A. Taylor, “Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study,” Lithos 77, 225–242 (2004).CrossRefGoogle Scholar
  32. N. V. Sobolev, A. M. Logvinova, and E. S. Efimova, “Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: implications for role of volatiles in diamond formation,” Russ. Geol. Geophys. 50 (12), 1234–1248 (2009).CrossRefGoogle Scholar
  33. T. Stachel and J. W. Harris, “Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania,” Contrib. Mineral. Petrol. 132 (1), 34–47 (1998).CrossRefGoogle Scholar
  34. T. Stachel, J. W. Harris, G. P. Brey, and W. Joswig, “Kankan diamonds (Guinea) II: lower mantle inclusion parageneses,” Contrib. Mineral. Petrol. 140 (1), 16–27 (2000).CrossRefGoogle Scholar
  35. T. Stachel, J. W. Harris, and K. Muehlenbachs, “Sources of carbon in inclusion bearing diamonds,” Lithos 112, 625–637 (2009).CrossRefGoogle Scholar
  36. K. Suito, J. Namba, T. Horikawa, Y. Taniguchi, N. Sakurai, M. Kobayashi, A. Onodera, O. Shimomura, and T. Kikegawa, “Phase relations of CaCO3 at high pressure and high temperature,” Am. Mineral. 86, 997–1002 (2001).CrossRefGoogle Scholar
  37. R. Tappert, J. Foden, T. Stachel, K. Muehlenbachs, M. Tappert, and K. Wills, “Deep mantle diamonds from South Australia: a record of Pacific subduction at the Gondwanan margin,” Geology 37(1), 43–46 (2009).CrossRefGoogle Scholar
  38. M. J. Walter, G. P. Bulanova, L. S. Armstrong, S. Keshav, J. D. Blundy, G. Gudfinnsson, O.T. Lord, A. R. Lennie, S. M. Clark, C. B. Smith, and L. Gobbo, “Primary carbonatite melt from deeply subducted oceanic crust,” Nature 454, 622–626 (2008).CrossRefGoogle Scholar
  39. M. J. Walter, S. C. Kohn, D. Araujo, G. P. Bulanova, C. B. Smith, E. Gaillou, J. Wang, A. Steele, and S. B. Shirey, “Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions,” Science 334, 54–57 (2011).CrossRefGoogle Scholar
  40. Y. Weiss, R. Kessel, W. L. Griffin, I. Kiflawi, O. Klein-Ben-David, D. R. Bell, J. W. Harris, and O. Navon, “A new model for the evolution of diamond-forming fluids: evidence from microinclusion-bearing diamonds from Kankan, Guinea,” Lithos 112S, 660–674 (2009).CrossRefGoogle Scholar
  41. R. Wirth, “Water in minerals detectable by electron energyloss srectroscopy EELS,” Phys. Chem. Mineral. 24, 561–568 (1997).CrossRefGoogle Scholar
  42. R. Wirth, “Focused Ion Beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy,” Eur. J. Mineral. 16, 863–876 (2004).CrossRefGoogle Scholar
  43. D. A. Zedgenizov, H. K. Kagi, V. S. Shatsky, and N. V. Sobolev, “Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): evidence from vibrational spectroscopy,” Mineral. Mag. 68 (1), 61–73 (2004).CrossRefGoogle Scholar
  44. D. A. Zedgenizov, A. L. Ragozin, and V. S. Shatsky, “Chloride–carbonate fluid in diamonds from the eclogite xenolith,” Dokl. Earth Sci. 415, 961–964 (2007).CrossRefGoogle Scholar
  45. D. A. Zedgenizov, H. Kagi, V. S. Shatsky, and A. L. Ragozin, “Local variations of carbon isotope composition in diamonds from Sao-Luis (Brazil): evidence for heterogeneous carbon reservoir in sublithospheric mantle,” Chem. Geol. 363, 114–124 (2014).CrossRefGoogle Scholar
  46. D. A. Zedgenizov, A. L. Ragozin, V. V. Kalinina and H. Kagi, “The mineralogy of Ca-Rich inclusions in sublithospheric diamonds,” Geochem. Int. 54 (10), 890–901 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Logvinova
    • 1
    • 2
  • R. Wirth
    • 3
  • D. A. Zedgenizov
    • 1
    • 2
  • L. A. Taylor
    • 4
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Helmholtz Center, Potsdam GFZPotsdamGermany
  4. 4.Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleUSA

Personalised recommendations