Geochemistry International

, Volume 56, Issue 4, pp 344–361 | Cite as

Geochemistry of Diagenesis of Organogenic Sediments: An Example of Small Lakes in Southern West Siberia and Western Baikal Area

  • G. A. Leonova
  • A. E. Mal’tsev
  • V. N. Melenevskii
  • L. V. Miroshnichenko
  • L. M. Kondrat’eva
  • V. A. Bobrov
Article
  • 8 Downloads

Abstract

Organogenic sediments (sapropels) in lakes are characterized by a reduced type of diagenesis, during which organic compounds are decomposed, the chemical composition of the pore waters is modified, and authigenic minerals (first of all, pyrite) are formed. Pyrolysis data indicate that organic matter undergoes radical transformatons already in the uppermost sapropel layers, and the composition of this organic matter is principally different from the composition of the organic matter of the its producers. The sapropels contain kerogen, whose macromolecular structure starts to develop during the very early stages of diagenesis, in the horizon of unconsolidated sediment (0–5 cm). The main role in the diagenetic transformations of organic matter in sediments is played by various physiological groups of microorganisms, first of all, heterotrophic, which amonifying, and sulfate-reducing bacteria. SO42− and Fe2+ concentrations in the pore waters of the sediments are determined to decrease (because of bacterial sulfate reduction), while concentrations of reduced Fe and S species (pyrite) in the solid phase of the sediment, conversely, increase. Comparative analysis shows that, unlike sapropels in lakes in the Baikal area, sapropels in southern West Siberia are affected by more active sulfate reduction, which can depend on both the composition of the organic matter and the SO42− concentration in the pore waters.

Keywords

geochemistry diagenesis organic matter sulfate reduction pore waters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. E. Artem’ev, Geochemistry of Organic Matter in the River–Sea System (Nauka, Moscow, 1993) [in Russian].Google Scholar
  2. M. M. Astafieva, A. Yu. Rozanov, and R. Hoover, “Framboids: their structure and origin,” Paleontol. J. 39 (5), 457–464 (2005).Google Scholar
  3. Baikal Atlas, Ed. by G. I. Galaziya (Roskartografiya, Moscow, 1993) [in Russian].Google Scholar
  4. J. W. Ball and D. K. Nordstrom, “User’s manual for WATERQ4F, with revised thermodynamic date base and rest cases for calculating speciation of major, trace, and redox elements in natural waters,” (MenloPark, 1991).Google Scholar
  5. N. A. Belkina, Extended Abstract of Candidate’s Dissertation in Geography (St. Petersburg, 2003) [in Russian].Google Scholar
  6. A. A. Bogush and E. V. Lazareva, “Behavior of heavy metals in sulfide mine and botton sediment Salair, Kemerovo region, Russia,” Environ. Earth Sci. 64 (5), 1293–1302 (2011).CrossRefGoogle Scholar
  7. A. J. Criddle, “A preliminary description of microcrystalline pyrite from the nannoplankton ooze at site 251, Southwest Indian ocean,” Initial Reports of the Deep Sea Drilling Project. Washington 26, 603–611 (1974).Google Scholar
  8. L. L. Demina, D. F. Bud’ko, T. N. Alekseeva, A. N. Novigatsky, A. S. Filippov and A. I. Kochenkova, “Partitioning of trace elements in the process of early diagenesis of bottom sediments in the White Sea,” Geochem. Int., 55 (1), 144–150 (2017).CrossRefGoogle Scholar
  9. V. P. Fadeeva, V. D. Tikhova, and O. N. Nikulicheva, “Elemental analysis of organic compounds with the use of automated CHNS Analyzers,” J. Anal. Chem. 63 (11), 1094–1106 (2008).CrossRefGoogle Scholar
  10. R. L. Folk, “Nannobacteria and the formation of framboidal pyrite: textural evidence,” J. Earth Syst. Sci. 114 (3), 369–74 (2005).CrossRefGoogle Scholar
  11. Geochemistry of Diagenesis of Pacific Sediments (Transoceanic Profile), Ed. by E. A. Ostroumov (Nauka, Moscow, 1980) [in Russian].Google Scholar
  12. L. Z. Granina, Early Diagenesis of Sediments of Lake Baikal (Geo, Novosibirsk, 2008) [in Russian].Google Scholar
  13. Yu. N. Gurskii, Geochemistry of Lithohydrosphere of Internal Seas. Volume 2. Mud Waters of the Red and Mediterranean Seas. Estuarine Zones. Tendencies in the Formation and Classification of Waters of Lithohydrosphere (GEOS, Moscow, 2007) [in Russian].Google Scholar
  14. I. K. Karpov, K. V. Chudnenko, D. A. Kulik and V. A. Bychinskii, “The convex programming minimization of five thermodynamic potentials other than Gibbs energy in geochemical modeling,” Am. J. Sci. 302 (4), 281–311 (2002).CrossRefGoogle Scholar
  15. A. V. Karyakin and I. F Gribovskaya, Emission Spectral Analysis of Biosphere Objects (Nauka, Moscow, 1979) [in Russian].Google Scholar
  16. T. V. Khodzher, Extended Abstract of Candidate’s Dissertation in Geography (Moscow, 2005) [in Russian].Google Scholar
  17. V. N. Kholodov, Geochemistry of Sedimentary Process (GEOS, Moscow, 2006) [in Russian].Google Scholar
  18. Klemt, E. S. Kaminski, R. Miller, G. Zibold, M. Astner, M. Burger, and E. Schmid, “Normierung von Extraktionsexperimenten zur Bestimmung der Bindung von Radiocaesium an Sedimente des Luganersees,” Umweltradioaktivität und Strahlendosen in der Schweiz. Bundesamt für Gesundheit B. 4.4, 1–5 (2000).Google Scholar
  19. M. J. Kohn, L. R. Riciputy, and D. L. Orange, “Sulfur isotope variability in biogenic pyrite: Reflections of heterogeneous bacterial colonization?,” Am. Mineral. 83, 1454–468 (1998).CrossRefGoogle Scholar
  20. N. M. Kokryatskaya, S. A. Zabelina, A. S. Savvichev, O. Yu. Moreva, and T. Ya. Vorobjeva, “Seasonal biogeochemical and microbiological studies of small lakes in taiga zone of northwestern Russian (Arkhangelsk Province),” Water Res. 39 (1), 105–117 (2012).CrossRefGoogle Scholar
  21. N. V. Korde, Biostratification and Typology of Russian Sapropels (AN SSSR, Moscow, 1960) [in Russian].Google Scholar
  22. E. V. Lazareva, G. A. Leonova, V. A. Bobrov, and L. V. Miroshnichenko, “Mineral composition and geochemistry of Holocene sapropel sequence of Lake Minzelinskoe (Novosobirsk oblast).” Geol. Mineral. Syr’ev. Res. Sibiri, No. 2, 118–122 (2014b).Google Scholar
  23. A. Yu. Lein, Yu. M. Miller, B. B. Namsaraev, G. A. Pavlova, N. V. Pimenov, I. I. Rusanov, A. S. Savvichev, and M. V. Ivanov, “Biogeochemical processes of sulfur cycle at the early diagenetic stages of sediments on the Yenisei River–Kara Sea profile,” Okeanologiya 34 (5), 681–692 (1994).Google Scholar
  24. A. Yu. Lein, N. A. Belyaev, M. D. Kravchishina, A. S. Savvichev, M. V. Ivanov, and A. P. Lisitsyn, “Isotopic markers of organic matter transformation at the water–sediment geochemical boundary,” Dokl. Earth Sci. 436 (2), 83–87 (2011).CrossRefGoogle Scholar
  25. G. A. Leonova, V. A. Bobrov, A. A. Bogush, and A. E. Mal’tsev, “Sapropels: wealth from the lake floor,” Nauka v Rossii 1, 28–35. (2014)Google Scholar
  26. G. A. Leonova, V. A. Bobrov, S. K. Krivonogov, A. A. Bogush, V. A. Bychinskii, A. E. Mal’tsev, and G. N. Anoshink, “Biogeochemical specifics of sapropel formation in cisbaikalian undrained lakes (by the example of lake ochki),” Russ. Geol. Geophys. 56 (5), 745–761 (2015).CrossRefGoogle Scholar
  27. A. P. Lisitzin, “Distribution of organic carbon in sediments of the Bering Sea,” Dokl. Akad. Nauk SSSR 103 (2), 299–302 (1955).Google Scholar
  28. N. V. Logvinenko, Marine Geology (Nedra, Leningrad, 1980) [in Russian].Google Scholar
  29. K. I. Lukashev, V. A. Kovalev, A. L. Zhukhovitskaya, A. A. Khomich, and V. A. Generalova, Geochemistry of Lacrustrine–Marsh Lithogenesis (Nauka Tekhnika, Minsk, 1971) [in Russian].Google Scholar
  30. A. E. Mal’tsev, G. A. Leonova, L. V. Miroshnichenko, V. A. Bobrov, A. A. Bogush, and S. K. Krivonogov, “Mineral composition of planktonogenic sapropel of Lake Kotokel (Baikal region), Geology of Seas and Oceans. Proceedings of 21 st International Conference (School) on Marine Geology (GEOS, Moscow, 2015), Vol. 3, 56–59 [in Russian].Google Scholar
  31. A. E. Mal’tsev, G. A. Leonova, V. A. Bobrov, V. N. Melenevskii, E. V. Lazareva, and S. K. Krivonogov, “Diagenetic transformation of organomineral sapropels of Lake Bol’shie Toroki, West Siberia,” Geol. Mineral. Res. Sibiri 3 (19), 65–75 (2014a).Google Scholar
  32. Manual on the Chemical Analysis of Terrestrial Surface Waters, Ed. by A. D. Semenov (Gidrometeoizdat, Leningrad, 1977) [in Russian].Google Scholar
  33. Mass Concentration of Hydrocarbonates and Alkalinity of Terrestrial Surface Waters and Purified Sewage Waters. Technique of Titration Measurements (Rostov on Don, 2006), RD 52.24.493-2006t [in Russian].Google Scholar
  34. V. N. Melenevsky, G. A. Leonova, and A. S. Konyshev, “The organic matter of the recent sediments of Lake Beloe (West Siberia) (from data of pyrolytic studies),” Russ. Geol. Geophys. 52 (6), 583–592 (2011).CrossRefGoogle Scholar
  35. V. N. Melenevsky, S. V. Saraev, E. A. Kostyreva, and V. A. Kashirtsev, “Diagenetic transformation of organic matter of the Holocene Black Sea sediments according to pyrolysis data,” Russ. Geol. Geophys. 58 (2), 225–239289 (2017).CrossRefGoogle Scholar
  36. Method of Argentometric Measurement of Chloride Mass Concentrations in Samples of Natural and Purified Sewage Waters (Rostov on Don, 2004) [in Russian].Google Scholar
  37. Method of Turbidimetric Measurement of Sulfate-Ion Mass Concentrations in Samples of Natural and Purified Sewage Waters (Rostov on Don, 2005) [in Russian].Google Scholar
  38. B. B. Namsaraev and T. I. Zemskaya, Microbiological processes of carbon cycle in the bottom sediments of Lake Baikal (GEO, Novosibirsk, 2000) [in Russian].Google Scholar
  39. Organomineral Agricultural Raw Material of the Novosibirsk Oblast (Novosibirsk, 1990) [in Russian].Google Scholar
  40. T. V. Pogodaeva, T. I. Zemskaya, L. P. Golobokova, O. M. Khlystov, H. Minami, and H. Sakagami, “Chemical composition of pore waters of bottom sediments in different Baikal basins,” Russ. Geol. Geophys. 48 (11), 886–900 (2007).CrossRefGoogle Scholar
  41. E. A. Romankevich, Geochemistry of Organic Matter in Ocean (Nauka, Moscow, 1977) [in Russian].Google Scholar
  42. A. G. Rozanov, I. V. Volkov, V. S. Sokolov, Z.V. Pushkina, and M. F. Pilipchuk, “Redox processes in sediments of Californian Bay and adjacent Pacific Ocean, Biogeochemistry of Diagenesis of Oceanic Sediments (Nauka, Moscow, 1976) [in Russian].Google Scholar
  43. D. N. Salikhov, G. I. Belikova, and E V. Sergeeva, “Equilibrium thermodynamics of ore manganese minerals,” Geol. Sb. 9, 164–172 (2011).Google Scholar
  44. A. V. Savenko, “Solubility of rhodochrosite MnCO3 and physicochemical stage of manganese (II) in seawater,” Proceedings of Annual Seminar on Experimental Mineralogy, Petrology, and Geochemistry, Moscow, Russia, 2004 (GEOKHI, Moscow, 2004) [in Russian].Google Scholar
  45. O. V. Shishkina, Geochemistry of Marine and Oceanic Mud Waters (Nauka, Moscow, 1972) [in Russian].Google Scholar
  46. V. I. Simonova, Atomic Absorption Methods of Element Determination in Rocks and Minerals (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  47. B. A. Skopintsev, “Organic matter in bottom waters,” Tr. GOIN 17 (29), (1950).Google Scholar
  48. M. F. Soliman and A. El Goresy, “Framboidal and idiomorphic pyrite in the upper Maastrichtian sedimentary rocks at Gabal Oweina, Nile Valley, Egypt: formation processes, oxidation products and genetic implications to the origin of framboidal pyrite,” Geochim. Cosmochim. Acta 90, 195–200 (2012).CrossRefGoogle Scholar
  49. N. M. Strakhov, “Diagenesis of sediments and its significance for sedimentary ore formation,” Izv. Akad. Nauk SSSR. Ser. Geol., No. 5, 12–49 (1953).Google Scholar
  50. A. P. Tessier, G. C. Cambell, and M. Bisson, “Sequential extraction procedure for the speciation of particulate trace metals,” Anal. Chem. 51, 844–851 (1979).CrossRefGoogle Scholar
  51. K. V. Titova and N. M. Kokryatskaya, “Sulfate reduction in bottom sediments of Lake Svyatoe (southern Arkhangelsk oblast),” Vestn. Irkut. Gos. Tekhn Univ., Nauki Zemle 84 (1), 52–56 (2014).Google Scholar
  52. P. A. Trudinger, I. B. Lambert, and G. W. Skyring, “Biogenic sulfide ores: a feasibility study,” Econ. Geol. 67 (8), 1114–1127 (1972).CrossRefGoogle Scholar
  53. I. I. Volkov, Sulfur Geochemistry in Ocean Sediments (Nauka, Moscow, 1984) [in Russian].Google Scholar
  54. L. A. Vorob’eva, Chemical Analysis of Soils. A Textbook (Mosk. Gos. Univ., Moscow, 1998) [in Russian].Google Scholar
  55. K. K. Votintsev, Hydrochemistry of Lake Baikal (Nauka, Moscow, 1961) [in Russian].Google Scholar
  56. N. I. Yermolaeva, E. Yu. Zarubina, R. E. Romanov, G. A. Leonova, and A. V. Puzanov, “Hydrobiological conditions of sapropel formation in lakes in the south of Western Siberia,” Water Res. 43 (1), 129–140 (2016).CrossRefGoogle Scholar
  57. Ya. E. Yudovich and M. P. Ketris, Geochemical Indicators of Lithogenesis (Lithological Geochemistry) (Geoprint, Syltyvkar, 2011) [in Russian].Google Scholar
  58. E. Yu. Zarubina, “Primary production of macrophytes of three sapropel lakes of different types, southern West Siberia (Novosibirsk oblast) in 2012,” Mir Nauki, Kul’tury, Obrazovaniya 5 (42), 441–444 (2013).Google Scholar
  59. Ya. E. Yudovich and M. P. Ketris, Manganese Geochemistry (Geoprint, Syktyvkar, 2014) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. A. Leonova
    • 1
  • A. E. Mal’tsev
    • 1
  • V. N. Melenevskii
    • 2
  • L. V. Miroshnichenko
    • 1
  • L. M. Kondrat’eva
    • 3
  • V. A. Bobrov
    • 1
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Trofimuk Institute of Petroleum Geology and GeophysicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  3. 3.Institute of Water and Ecological Problems, Far East BranchRussian Academy of SciencesKhabarovskRussia

Personalised recommendations