Geochemistry International

, Volume 56, Issue 4, pp 332–343 | Cite as

Mercury in Hydrobionts and Their Habitat in Grønfjorden, West Spitsbergen, in Early Springtime

  • N. V. Lebedeva
  • O. L. Zimina
  • N. N. Fateev
  • A. L. Nikulina
  • I. V. Berchenko
  • N. I. Meshcheryakov
Article

Abstract

The first data were obtained on the total mercury content in hydrobionts and their habitat in Grønfjorden, Spitsbergen, at the waste discharge sites of the settlement of Barentsburg in early spring 2017. The Hg concentration was below the detection limit in the water and varied from 7.1 to 42.3 ng/g of dry weight in the bottom sediments. Mercury concentration in the hydrobionts increased toward the inner fjord and was higher near the mouth of the Grøndalen River, which flows into the fjord. Elevated Hg concentrations at the mouth of the Grøndalen River indicate that much of the toxic metal is brought to the inner part of the fjord with riverine runoff, and this Hg source is likely more important than the surface supply of Hg transferred from local surface pollution centers at Barentsburg. The Hg concentration depended on the position of the marine organisms in the trophic chain and was the highest in the detritophage mollusks Thyasira gouldi, Cardium sp., and Macoma calcarea, the specialized predatory sea snail Cryptonatica affinis, and the cod Gadus morhua, which is a benthosophage–secondary predator. The total Hg concentrations in the hydrobionts and their habitat in Grønfjorden were generally relatively low and close to the background one.

Keywords

hydrobionts Hg pollution Grønfjorden Spitsbergen Arctic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AMAP Assessment 2011: Mercury in the Arctic. Arctic Monitoring and Assessment Programme (AMAP, Oslo, 2011).Google Scholar
  2. AMAP/UNEP, 2013: Technical Background Report for the Global Mercury Assessment 2013. Arctic Monitoring and Assessment Programme (Oslo, Norway/UNEP Chemicals Branch, Geneva, 2013).Google Scholar
  3. L. Atwell, K. A. Hobson, and H. E. Welch, “Biomagnification and bioaccumulation of mercury in an arctic marine food web: insights from stable nitrogen isotope analysis,” Can. J. Fish. Aquat. Sci. 55, 1114–1121 (1998).CrossRefGoogle Scholar
  4. A. Aubail, R. Dietz, F. Rigét, C. Sonne, Ø. Wiig, and F. Caurant, “Temporal trend of mercury in polar bears (Ursus maritimus) from Svalbard using teeth as a biomonitoring tissue,” J. Environ. Monit. 14, 56–63 (2012).CrossRefGoogle Scholar
  5. J. Bełdowski, M. Miotk, A. Zaborska, and J. Pempkowiak, “Distribution of sedimentary mercury off Svalbard, European Arctic,” Chemosphere 122, 190–198 (2015).CrossRefGoogle Scholar
  6. T. Berg, S. Sekkesæter, E. Steinnes, A. K. Valdal, and G. Wibetoe, Springtime depletion of mercury in the European Arctic as observed at Svalbard,” Sci. Tot. Environ. 304, 43–51 (2003).CrossRefGoogle Scholar
  7. T. F. Bidleman, G. A. Stern, and G. T. Tomy, ‘Scavenging amphipods: sentinels for penetration of mercury and persistent organic chemicals into food webs of the deep Arctic Ocean,” Environ. Sci. Technol. 47, 5553–5561 (2013).CrossRefGoogle Scholar
  8. N. S. Bloom, “On the chemical form of mercury in edible fish and marine invertebrate tissue,” Can. J. Fish. Aquat. Sci. 49, 1010–1017 (1992).CrossRefGoogle Scholar
  9. S. Booth D. Zeller, “Mercury, food webs, and marine mammals: implications of diet and climate change for human health,” Environ. Health Perspect. 113, 521–526 (2005).CrossRefGoogle Scholar
  10. E. W. Born, A. Renzoni, and R. Dietz, “Total mercury in hair of Polar bears (Ursus maritimus) from Greenland and Svalbard,” Polar Res. 9, 113–120 (1991).CrossRefGoogle Scholar
  11. B. M. Braune, P. M. Outridge, and A. T. Fisk, “Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: an overview of spatial and temporal trends,” Sci. Tot. Environ. 351, 4–56 (2005).CrossRefGoogle Scholar
  12. L. M. Campbell, R. J. Norstrom, and K. A. Hobson, “Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay),” Sci. Tot. Environ. 351, 247–263 (2005).CrossRefGoogle Scholar
  13. M. G. Clayden, L. M. Arsenault, and K. A. Kidd, “Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem,” Sci. Tot. Environ. 509, 206–215 (2015).CrossRefGoogle Scholar
  14. B. N. Demin, A. P. Graevskii, A. S. Demeshkin, S. V. Vlasov, S. S. Krylov, and N. A. Laletin, State and Tendencies in Changes of Environmental Pollution in the Anthropogenic Activity Area of the Russian Enterprises in the Spitsbergen Archipelago (Settlement Barentsburg and Adjacent Territories) During 2002—2010 (AANII, St.Petersburg, 2011) [in Russian].Google Scholar
  15. R. Dietz, F. Riget, and P. Johansen, “Lead, cadmium, mercury and selenium in Greenland marine animals,” Sci. Tot. Environ. 186 (1), 67–93 (1996).CrossRefGoogle Scholar
  16. R. Dietz, P. M. Outridge, and K. A. Hobson, “Anthropogenic contributions to mercury levels in present-day Arctic animals–a review,” Sci. Total Environ. 407 (24), 6120–6131 (2009).CrossRefGoogle Scholar
  17. R. Dietz, C. Sonne, and N. Basu, “What are the toxicological effects of mercury in Arctic biota?” Sci. Tot. Environ. 443, 775–790 (2013).CrossRefGoogle Scholar
  18. T. A. Douglas, L. L. Loseto, and R. W. Macdonald, “The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review,” Environ. Chem. 9, 321–355 (2012).CrossRefGoogle Scholar
  19. M. L. Fant, M. Nyman, E. Helle, and E. Rudbäck, “Mercury, cadmium, lead and selenium in ringed seals (Phoca hispida) from the Baltic Sea and from Svalbard,” Environ. Pollut. 111, 493–501 (2001).CrossRefGoogle Scholar
  20. C. P. Ferrari, P. A. Gauchard, and K. Aspmo, “Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Ålesund, Svalbard,” Atmos. Environ. 39, 7633–7645 (2005).CrossRefGoogle Scholar
  21. M. Grotti, F. Soggia, and C. Ianni, “Bioavailability of trace elements in surface sediments from Kongsfjorden, Svalbard,” Mar. Pollut. Bull. 77, 367–374 (2013).CrossRefGoogle Scholar
  22. I. G. Hallanger, A. Ruus, D. Herzke, N. A. Warner, A. Evenset, E. S. Heimstad, G. W. Gabrielsen, and K. Borgå, “Influence of season, location, and feeding strategy on bioaccumulation of halogenated organic contaminants in Arctic marine zooplankton. Environ,” Toxic. Chem. 30, 77–87 (2011).CrossRefGoogle Scholar
  23. B. S. Holte, Dahle, B. Gulliksen, and K. Naes, “Some macrofaunal effects of local pollution and glacierinduced sedimentation, with indicative chemical analyses, in the sediments of two Arctic fjords,” Polar Biol. 16, 549–557 (1996).CrossRefGoogle Scholar
  24. M. V. Ivanov, “Mercury in the bottom sediments of the Chukchi Sea and Ajacent Arctic Areas,” Geol. Geoekol. Kontnent. Okrain Evrazii, No. 4, 81–87 (2012).Google Scholar
  25. I. Jæger, H. Hop, and G. W. Gabrielsen, “Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard,” Sci. Tot. Environ. 407, 4744–4751 (2009).CrossRefGoogle Scholar
  26. J. L. Kirk, I. Lehnherr, and M. Andersson, “Mercury in Arctic marine ecosystems: Sources, pathways and exposure,” Environ. Res. 119, 64–87 (2012).CrossRefGoogle Scholar
  27. R. A. Lavoie, C. E. Hebert, and J. F. Rail, “Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis. Sci. Tot. Environ. 408, 5529–5539 (2010).CrossRefGoogle Scholar
  28. Z. Lu, C. Minghong, J. Wang, Z. Yin, and H. Yang, “Levels and distribution of trace metalsin surface sediments from Kongsfjorden, Svalbard, Norwegian Arctic,” Environ. Geochem. Health. 35, 257–269 (2013).CrossRefGoogle Scholar
  29. Mercury: Environmental Aspects. Environmental Health Criteria 86 (WHO, Geneva, 1989).Google Scholar
  30. N. I. Meshcheryakova and G. A. Tarasov, “Sedimentation and lithological structure of the subsurface sedimentary sequence in the near-mouth shoal of the Grendalen River (Gren-Fjord Bay),” Vestn. Murmansk. Gos. Tekhn. Univ. 19 (1), 101–109 (2016).Google Scholar
  31. Methylmercury. Environmental Gealth Criteria 101. (WHO, Geneva, 1990).Google Scholar
  32. P. M. Outridge, R. W. Macdonald, and F. Wang, “A mass balance inventory of mercury in the Arctic Ocean,” Environ. Chem. 5, 89–111 (2008).CrossRefGoogle Scholar
  33. I. B. Øverjordet, D. Altin, and T. Berg, “Acute and sublethal response to mercury in Arctic and boreal calanoid copepods,” Aquatic Toxic. 155, 160–165 (2014).CrossRefGoogle Scholar
  34. I. B. Øverjordet, G. W. Gabrielsen, and T. Berg, “Effect of diet, location and sampling year on bioaccumulation of mercury, selenium and cadmium in pelagic feeding seabirds in Svalbard,” Chemosphere 122, 14–22 (2015).CrossRefGoogle Scholar
  35. E. G. Pacyna, J. M. Pacyna, and K. Sundseth, “Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020,” Atmos. Environ. 44, 2487–2499 (2010).CrossRefGoogle Scholar
  36. N. Pirrone, S. Cinnirella, and X. Feng, “Global mercury emissions to the atmosphere from anthropogenic and natural sources,” Atmos. Chem. Phys. 10, 5951–5964 (2010).CrossRefGoogle Scholar
  37. S. Rognerud, J. O. Grimalt, and B. O. Rosseland, “Mercury and organochlorine contamination in brown trout (Salmo trutta) and arctic charr (Salvelinus alpinus) from high mountain lakes in Europe and the Svalbard archipelago,” Water, Air, and Soil Pollut.: Focus 2, 209–232 (2002).CrossRefGoogle Scholar
  38. H. Routti, R. J. Letcher, and E. W. Born, “Influence of carbon and lipid sources on variation of mercury and other trace elements in polar bears (Ursus maritimus),” Environ. Toxic. Chem. 31, 2739–2747 (2012).CrossRefGoogle Scholar
  39. A. Ruus, I. B. Øverjordet, and H. F. V. Braaten, “Methylmercury biomagnification in an Arctic pelagic food web,” Environ. Toxic. Chem. 34, 2636–2643 (2015).CrossRefGoogle Scholar
  40. K. Sagerup, L. B. Helgason, and A. Polder, “Persistent organic pollutants and mercury in dead and dying glaucous gulls (Larus hyperboreus) at Bjørnøya (Svalbard),” Sci. Tot. Environ. 407, 6009–6016 (2009).CrossRefGoogle Scholar
  41. W. H. Schroeder, K. G. Anlauf, L. A. Barrie, “Arctic springtime depletion of mercury,” Nature 394, 331–332 (1998).CrossRefGoogle Scholar
  42. G. A. Stern and R. W. Macdonald, “Biogeographic provinces of total and methyl mercury in zooplankton and fish from the Beaufort and Chukchi Seas: results from the SHEBA drift,” Environ. Sci. Technol. 39, 4707–4713 (2005).CrossRefGoogle Scholar
  43. Ø. Wiig, A. Renzoni, and I. Gjertz, “Levels of cadmium and mercury in the hair of Atlantic walruses (Odobenus rosmarus rosmarus) from Svalbard, Norway,” Polar Biol. 21, 343–346 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. V. Lebedeva
    • 1
    • 2
  • O. L. Zimina
    • 1
  • N. N. Fateev
    • 3
  • A. L. Nikulina
    • 3
  • I. V. Berchenko
    • 1
  • N. I. Meshcheryakov
    • 1
  1. 1.Murmansk Marine Biological Institute, Kola Scientific CenterRussian Academy of SciencesMurmanskRussia
  2. 2.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  3. 3.Arctic and Antarctic Research InstituteSt. PetersburgRussia

Personalised recommendations