V. V. Adushkin, A. V. Vityazev, and G. V. Pechernikova, “Contribution to the Theory of the Origin and Evolution of the Earth,” in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (URSS, Moscow, 2008), pp. 275–296 [in Russian].
Google Scholar
C. Alibert, M. D. Norman, and M. T. McCulloch, “An Ancient Sm-Nd Age for a Ferroan Noritic Anorthosite Clast from Lunar Breccia 67016,” Geochim. Cosmochim. Acta 58, 2921–2926 (1994).
Article
Google Scholar
C. J. Allègre, G. Manhes, and C. Göpel, “The Age of the Earth,” Geochim. Cosmochim. Acta
59, 1445–1456 (1995).
Article
Google Scholar
C. J. Allègre, G. Manhes, and C. Göpel, “The Major Differentiation of the Earth at 4.45 Ga,” Earth Planet. Sci. Lett. 267, 368–398 (2008).
Article
Google Scholar
Y. Amelin, A. N. Krot, I. D. Hutcheon, and A. A. Ulyanov, “Pb Isotopic Ages of Chondrules and Ca, Al-Rich Inclusions,” Science 297, 1678–1683 (2002).
Article
Google Scholar
E. Anders and N. Grevesse, “Abundances of the Elements: Meteoritic and Solar,” Geochim. Cosmochim. Acta 53, 197–214 (1989).
Article
Google Scholar
E. Belbruno and J. R. Gott, “Where Did the Moon Come from?,” Astronom. J. 129, 1724–1745 (2005).
Article
Google Scholar
L. E. Borg, M. Norman, L. Nyquist, D. Bogard, G. Snyder, L. Taylor, and M. Lindstrom, “Isotopic Studies of Ferroan Anorthosite 62236: A Young Lunar Crustal Rock from a Light-Rare-Earth-Element Depleted Source,” Geochim. Cosmochim Acta 63, 2679–2691 (1999).
Article
Google Scholar
A. Bouvier, M. Wadhwa, and P. Janney, “Pb-Pb Isotope Systematics in an Allende Chondrule,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008), A104.
A. G. W. Cameron and W. Ward, “The Origin of the Moon,” Proc. 7th. Lunar. Conf. 120–122 (1976).
R. M. Canap, “Simulations of a Late Lunar Forming Impact,” Icarus 168, 433–456 (2004).
Article
Google Scholar
R. M. Canap and E. Asphaug, “Origin of the Moon in a Giant Impact near the End of the Earth’s Formation,” Nature 41(6848), 708–712 (2001).
Article
Google Scholar
R. M. Canap and L. W. Esposito, “Accretion of the Moon from an Impact-Generated Disk,” Icarus 119, 427–446 (1996).
Article
Google Scholar
R. W. Carlson and G. W. Lugmair, “The Age of Ferroan Anorthosite 60025: Oldest Crust on a Young Moon?” Earth Planet. Sci. Lett. 90, 119–130 (1988).
Article
Google Scholar
R. W. Carlson and G. W. Lugmair, “Timescales of Planetesimal Formation and Differentiation Based on Extinct and Extant Radioisotopes,” in “Origin of the Earth and Moon,” Ed. by R. M. Canap and K. Righter (Univ. Arizona, 2000), pp. 25–44.
J. E. Chambers, “Planetary Accretion in the Inner Solar System,” Earth Planet. Sci. Lett. 223, 241–252 (2004).
Article
Google Scholar
G. De Maria, G. Balducci, M. Guido, and V. Piacente, “Mass Spectrometric Investigation of the Vaporization Process of Apollo 12 Lunar Samples,” Proc. 2nd Lunar. Conf. 2, 1367–1380. (1971).
Google Scholar
T. M. Eneev, “New Accumulation Model of Planet Formation and the Structure of the Outer Areas of the Solar System,” Preprint No. 166 (Inst. Prikl. Matem. Akad. Nauk SSSR, Moscow, 1979) [in Russian].
Google Scholar
E. M. Galimov, “Several Consideration on the Early History of the Earth,” in From Mantle to Meteorites, Ed. by K. Gopalan et al., (Ind. Ac. Sci., Bangalore, 1990), pp. 177–188.
Google Scholar
E. M. Galimov, “Problem of the Moon Origin,” in Main Directions in Geochemistry, Ed. by E. M. Galimov (URSS, Moscow, 1995) [in Russian].
Google Scholar
E. M. Galimov, “On the Origin of Lunar Material,” Geokhimiya, No. 7, 691–706 (2004) [Geochem. Int. 43, 595–609 (2004)].
E. M. Galimov, “Present-Day State of the Problem of the Origin of the Earth-Moon System,” in Problems of the Origin and Evolution of the Biosphere Ed. by E. M. Galimov (URSS, Moscow, 2008) [in Russian].
Google Scholar
E. M. Galimov, S. D. Kulikov, R. S. Kremnev, Yu. A. Surkov, and O. B. Khavroshkin, “The Russian Lunar Exploration Project,” Solar Syst. Res. 33(5), 327–337 (1999).
Google Scholar
E. M. Galimov, A. M. Krivtsov, A. V. Zabrodin, et al., “Dynamic Model for the Formation of the Earth-Moon System,” Geokhimiya, No. 11, 1139–1150 (2005) [Geochem. Int. 43, 1045–1055 (2005)].
P. Goldreich and W. R. Ward, “The Formation of Planetesimals,” Astrophys. J. 183(3), 1057–1061 (1973).
Google Scholar
N. Grevese and A. J. Sauval, “Standard Solar Composition,” in “Solar Composition and Evolution-from Core to Corona,” Ed. by C. Frohlich, M. C. E. Huber, and S. K. Solanki, Space Sci. Rev. 85, 161–174 (1998).
L. Grossman and J. W. Larimer, “Early Chemical History of the Solar System,” Rev. Geophys. Sp. Phys. 12, 71–101 (1974).
Article
Google Scholar
L. E. Gurevich and A. I. Lebedinskii, “Formation of Planets,” Izv. Akad. Nauk SSSR, Ser. Fiz. 14(6), 765–775 (1950).
Google Scholar
K. E. Haisch, E. A. Loda, and C. L. Loda, “Disk Frequencies and Life-Times in Young Clusters,” Astrophys. J. 553, L153–L156 (2001).
Article
Google Scholar
A. N. Halliday, “A Young Moon-Forming Giant Impact at 70–110 Million Years Accompanied by Late-Stage Mixing, Core Formation and Degassing of the Earth,” Phil. Trans. R. Soc. London A366, 4163–4181 (2008).
Google Scholar
A. N. Halliday and D.-C. Lee, “Tungsten Isotopes and the Early Development of the Earth and Moon,” Geochim. Cosmochim. Acta 63, 4157–4179 (1999).
Article
Google Scholar
A. N. Halliday and D. Porcelly, “In Search of Lost Planets-the Paleocosmochemistry of the Inner Solar System,” Earth Planet. Sci. Lett. 192, 545–559 (2001).
Article
Google Scholar
B. B. Hanan and G. R. Tilton, “60025: Relict of Primitive Lunar Crust?” Earth Planet. Sci. Lett. 84, 15–21 (1987).
Article
Google Scholar
A. W. Harris and A. Kaula, “Coaccretional Model of Satellite Formation,” Icarus 24, 516–524 (1975).
Article
Google Scholar
W. K. Hartmann and D. R. Davis, “Satellite-Sized Planetesimals and Lunar Origin,” Icarus 24, 504–515. (1975)
Article
Google Scholar
A. Hashimoto, “Evaporation Metamorphism in the Early Solar Nebula-Evaporation Experiments on the Melt FeO-MgO-SiO2-CaO-Al2O3 and Chemical Fractionations of Primitive Materials,” Geochem. J. 17, 111–145 (1983).
Google Scholar
R. W. Hockney and J. W. Eastwood, Computer Simulation using Particles (Inst. Phys. Adam Hilger, Bristol, 1988).
Book
Google Scholar
M. F. Horan, M. L. Smoltar, and R. J. Walker, “W-182 and Re-187-Os-187 Systematics of Iron Meteorites: Chronology for Melting, Differentiation, and Crystallization in Asteroids,” Geochim. Cosmochim. Acta 62, 545–554 (1998).
Article
Google Scholar
M. Humayun and P. Cassen, “Processes Determining the Volatile Abundances of the Meteorites and Terrestrial Planets,” in Origin of the Earth and Moon, Ed. by R. M. Canap and K. Righter (Univ. Arizona, 2000), pp. 3–24.
M. Humayun and R. N. Clayton, “Precise Determination of the Isotopic Composition of Potassium: Application to Terrestrial Rocks and Lunar Soils,” Geochim. Cosmochim. Acta 59, 2115–2130 (1995).
Article
Google Scholar
D. M. Hunten, R. O. Pepin, and J. C. G. Walker, “Mass Fractionation in Hydrodynamic Escape,” Icarus 69, 532–549 (1987).
Article
Google Scholar
J. H. Jones and M. J. Drake “Geochemical Constraints on Core Formation in the Earth,” Nature 322, 221–228 (1986).
Article
Google Scholar
E. K. Kazenas and Yu. V. Tsvetkov, Thermodynamics of Oxide Evaporation (LKI, Moscow, 2008) [in Russian].
Google Scholar
T. Kleine, H. Palme, K. Mezger, and A. N. Halliday, “Hf-W Chronology of Lunar Metal and the Age and Early Differentiation of the Moon,” Science 310, 1671–1674 (2005).
Article
Google Scholar
T. Kleine, M. Touboul, J. A. Van Orman, B. Bourdon, C. Maden, K. Mezger, and A. N. Halliday, “Hf-W Thermochronometry: Closure Temperature and Constraints on the Accretion and Cooling History of H Chondrites Parent Body,” Earth Planet. Sci. Lett. 270, 106–118 (2008).
Article
Google Scholar
T. Kleine, M. Touboul, C. Burkhardt, and B. Bourdon, “Dating the First ∼100 Ma of the Solar System: From the Formation of CAIs to the Origin of the Moon,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008a), A480.
T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, N. Palme, S. Jacobsen, Q.-Z. Yin, and A. N. Halliday, “Hf-W Chronology of the Accretion and Early Evolution of Asteroids and Terrestrial Planets,” Geochim. Cosmochim. Acta 73, 5150–5188 (2009).
Article
Google Scholar
A. V. Kolesnichenko and M. Ya. Marov, “Fundamentals of the Mechanics of Heterogeneous Media in the Circumsolar Protoplanetary Cloud: The Effects of Solid Particles on Disk Turbulence,” Astron. Vestn. 40(1), 2–62 (2006) [Solar Syst. Res. 40 (1), 1–56 (2006)].
Google Scholar
N. N. Kozlov and T. M. Eneev, “Numerical Modeling of the Formation of Planets from a Protoplanetary Cloud,” Preprint No. 134 (Inst. Prikl. Matem. Akad. Nauk SSSR, Moscow, 1977) [in Russian].
Google Scholar
A. M. Krivtsov and N. V. Krivtsova, “Particle Method and Its Use in the Mechanics of Deformable Solids,” Dal’nevost. Matem. Zh. 3(2), 254–276 (2002).
Google Scholar
E. Kurahashi, N. T. Kita, H. Nagahara, and Y. Morishita, “26Al-26Mg Systematics and Petrological Study of Chondrules in CR Chondrites,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008) A504.
O. L. Kuskov and V. A. Kronrod, “Bulk Composition and Sizes of the Lunar Core,” in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (URSS, Moscow, 2008), pp. 317–327 [in Russian].)
Google Scholar
J. W. Larimer, “The Condensation and Fractionation of Refractory Lithophile Elements,” Icarus 40, 446–454 (1979).
Article
Google Scholar
J. W. Larimer, “Nebular Chemistry and Theories of Lunar Origin,” in Origin of the Moon, Ed. by W. K. Hartman, R. J. Phillips, and G. J. Taylor (Lunar Planet. Inst., Houston, 1986), pp. 145–171.
Google Scholar
A. A. Le-Zakharov and A. M. Krivtsov, “Algorithm for Calculation of the Collisional Dynamics of Gravitating Particles for the Simulation of the Earth-Moon System Formation Due to the Gravitational Collapse of a Dust Cloud,” in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (URSS, Moscow, 2008), pp. 329–344 [in Russian].
Google Scholar
D.-C. Lee and A. N. Halliday, “Hafnium-Tungsten Chronometry and the Timing of Terrestrial Core Formation,” Nature 378, 771–774 (1995).
Article
Google Scholar
D.-C. Lee, A. N. Halliday, G. A. Snyder, and L. A. Taylor, “Age and Origin of the Moon,” Science 278, 1098–1103 (1997).
Article
Google Scholar
I. Leya, W. Rainer, and A. N. Halliday, “Cosmic-Ray Production of Tungsten Isotopes in Lunar Samples and Meteorites and Its Implications for Hf-W Cosmochemistry,” Earth Planet. Sci. Lett. 175, 1–12 (2000).
Article
Google Scholar
O. M. Markova, O. I. Yakovlev, G. L. Semenov, and A. N. Belov, “Some General Experimental Results on Natural Melt Evaporation in the Knudsen Cell,” Geokhimiya, No. 11, 1559–1569 (1986).
M. Ya. Marov, A. V. Kolesnichenko, A. B. Makalkin, et al., “From Protosolar Cloud to the Planetary System: Model of the Evolution of a Gas-Dust Disk,” in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (URSS, Moscow, 2008), pp. 223–273 [in Russian].
Google Scholar
M. T. McCulloch, “Primitive 87Sr/86Sr from an Archean Barite and Conjecture on the Earth’s Age and Origin,” Earth Planet. Sci. Lett. 126, 1–13 (1994).
Article
Google Scholar
H. J. Melosh, “A New and Improved Equation of State for Impact Computations,” Proc. 31st Lunar Planet. Conf., 1903 (2000).
Y. Nakamura, “Seismic Velocity Structure of the Lunar Mantle,” J. Geophys. Res. 88, 677–686 (1983).
Article
Google Scholar
H. E. Newsom, “Constraints on the Origin of the Moon from Abundance of Molybdenum and Other Siderophile Elements,” in Origin of the Moon, Ed. by W. K. Hartman, R. J. Phillips, and G. J. Taylor (Lunar Planet. Inst., Huoston, 1986), pp. 203–230.
Google Scholar
M. D. Norman, E. Borg, L. E. Nyquist, and D. D. Bogard, “Chronology, Geochemistry, and Petrology of a Ferroan Noritic Anorthosite Clast from Descartes Breccia 67215: Clues to the Age, Origin, Structure, and Impact History of the Lunar Crust,” Meteor. Planet. Sci. 38, 645–661 (2003).
Article
Google Scholar
L. E. Nyquist and C.-Y. Shih, “The Isotopic Record of Lunar Volcanism,” Geochim. Cosmochim. Acta 56, 2213–2234 (1992).
Article
Google Scholar
H. St. C. O’Neill, “The Origin of the Moon and the Early History of the Earth-A Chemical Model. Part 1: The Moon,” Geochim. Cosmochim. Acta 55, 1135–1157 (1991).
Article
Google Scholar
K. Pahlevan and D. J. Stevenson, “Volatile Loss Following the Moon-Forming Giant Impact,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008), A716.
F. A. Podosek and P. Cassen, “Theoretical, Observational, and Isotopic Estimates of the Lifetime of the Solar Nebula,” Meteoritics 29, 6–25 (1994).
Google Scholar
F. A. Podosek and M. Ozima, “The Xenon Age of the Earth,” in Origin of the Earth and Moon, Ed. by R. M. Canap and K. Righter (Univ. Arizona, 2000), pp. 63–74.
F. Poitrasson, “Does Planetary Differentiation Really Fractionate Iron Isotopes?” Earth Planet. Sci. Lett. 223, 484–492 (2007).
Article
Google Scholar
F. Poitrasson, A. N. Halliday, D. C. Lee, S. Levasseur, and N. Teutsch, “Iron Isotope Differences between Earth, Moon, Mars and Vesta as Possible Records of Contrasted Accretion Mechanisms,” Earth Planet. Sci. Lett. 223, 253–266 (2004)
Article
Google Scholar
D. Porcelli, D. Woollum, and P. Cassen, “Deep Earth Rare Gases: Initial Inventories, Capture from the Solar Nebula, and Losses during Moon Formation,” Earth Planet. Sci. Lett. 193, 237–251 (2001).
Article
Google Scholar
K. Righter, K. M. Pando, L. Danielson, and C.-T. Lee, “Partitioning of Mo, P, and Other Siderophile Elements (Cu, Ga, Sn, Ni, Co, Cr, Mn, V, and W) between Metal and Silicate Melt as a Function of Temperature and Silicate Melt Composition,” Earth Planet. Sci. Lett. 291, 1–9 (2010).
Article
Google Scholar
A. E. Ringwood, “Composition and Origin of the Moon,” in “Origin of the Moon,” Ed. by W. K. Hartmann et al. (Lunar Planet. Inst., Houston, 1986), pp. 673–698.
Google Scholar
V. S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets (Moscow, Nauka, 1969) [in Russian].
Google Scholar
R. Schoenberg, B. S. Kamber, K. D. Collerson, and O. Eugster, “New W-Isotope Evidence for Rapid Terrestrial Accretion and Very Early Core Formation,” Geochim. Cosmochim. Acta 66, 3151–3160 (2002).
Article
Google Scholar
C.-Y. Shih, L. E. Nyquist, E. J. Dasch, D. D. Bogard, B. M. Bansal, and H. Wiesmann, “Age of Pristine Noritic Clasts from Lunar Breccias 15445 and 15455,” Geochim. Cosmochim. Acta 57, 915–931 (1993).
Article
Google Scholar
G. R. Stewart and W. M. Kaula, “A Gravitational Kinetic Theory for Planetesimales,” Icarus 24, 516–524 (1980)
Google Scholar
D. Stevenson, “Earth Formation: Combining Physical Models with Isotopic and Elemental Constraints,” Geochim. Cosmochim. Acta, 15th Goldshmidt Conference Abstract Volume, A382 (2005).
T. D. Swindle and F. A. Podosek, “Iodine-Xenon Dating,” in Meteorites and the Early Solar System, Ed. by J. F. Kerridge and M. S. Matthews (Univ. Arizona, Tucson, 1988), pp. 1127–1146 (1988).
Google Scholar
S. R. Taylor, “The Origin of the Moon: Geochemical Consideration,” in Origin of the Moon, Ed. by W. K. Hartmann, R. J. Phillips, and G. J. Taylor (Lunar Planet. Inst., Houston, 1986), pp. 125–144.
Google Scholar
F. Tera, D. A. Papanastassiou, and G. J. Wasserburg, “A Lunar Cataclysm at ∼3.95 AE and the Structure of the Lunar Crust,” Proc. 4th Lunar. Conf., 723–725 (1973).
M. Touboul, T. Kleine, B. Bourdon, H. Palme, and R. Wieler, “Late Formation and Prolonged Differentiation of the Moon Inferred from W Isotopes in Lunar Metals,” Nature 450, 1206–1209 (2007).
Article
Google Scholar
S. V. Vasilyev, A. M. Krivtsov, and E. M. Galimov, “Modeling Space Bodies Growth by Accumulation of Space Dust Material,” in Proc. 32nd Summer School-Conference Advanced Problem in Mechanics, St. Petersburg. Russia, 2004 (St. Petersburg, 2004), pp. 425–428.
A. V. Vityazev, G. V. Pechernikova, and V. S. Safronov, Terrestrial Planets: Origin and Early Evolution (Nauka, Moscow, 1990) [in Russian].
Google Scholar
J. Wang, A. M. Davis, R. N. Clayton, and A. Hashimoto, “Evaporation of Single Crystal Forsterite: Evaporation Kinetics, Magnesium Isotope Fractionation and Implication of Mass-Dependent Isotopic Fractionation of Mass-Controlled Reservoir,” Geochim. Cosmochim. Acta 63, 953–966 (1999).
Article
Google Scholar
H. Wanke and G. Dreibus, “Geochemical Evidence for the Formation of the Moon by Impact-Induced Fission of the Proto-Earth,” in Origin of the Moon, Ed by W. K. Hartman et al. (Lunar Planet. Inst., Houston, 1986), pp. 649–672.
Google Scholar
S. Weyer, A. D. Anbar, G. P. Brey, C. Munker, K. Mezger, and A. B. Woodland, “Iron Isotope Fractionation during Planetary Differentiation,” Earth Planet. Sci. Lett. 240, 251–264 (2005).
Article
Google Scholar
G. W. Wetherill, “Formation of the Terrestrial Planets,” Annu. Rev. Astron. Astrophys. 18, 77–113 (1980)
Article
Google Scholar
G. W. Wetherill and L. P. Cox, “The Range of Validity of the Two-Body Approximation in Models of Terrestrial Planet Accumulation,” Icarus 63, 290–303 (1985).
Article
Google Scholar
H. M. Williams, A. Markowski, G. Quitté, A. N. Halliday, N. Teutsch, and S. Levasseur, “Fe Isotope Fractionation in Iron Meteorites: New Insights into Metal-Sulphide Segregation and Planetary Accretion,” Earth Planet. Sci. Lett. 250, 486–500 (2006).
Article
Google Scholar
B. J. Wood, J. Wade, and M. R. Kilburn, “Core Formation and the Oxidation State of the Earth: Additional Constraints from Nb, V and Cr Partitioning,” Geochim. Cosmochim. Acta 72, 1415–1426 (2008).
Article
Google Scholar
Q. Yin, S. B. Jacobsen, K. Yamashita, J. Blichert-Toff, P. Telouk, and F. Albarede, “A Short Timescale for Terrestrial Planet Formation from Hf-W Chronometry of Meteorites,” Nature 418, 949–952 (2002).
Article
Google Scholar
A. V. Zabrodin, E. A. Zabrodina, M. S. Legkostupov, et al., “Some Descriptive Models of the Protoplanetary Disk of the Sun at the Initial Stage of its Evolution,” in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (URSS, Moscow, 2008), pp. 297–315 [in Russian].
Google Scholar