Nozzle Length Effect on the Performance of the Jet-Driven Helmholtz Oscillator

Abstract—

The excitation of pressure fluctuations in a model jet-driven Helmholtz oscillator is experimentally investigated. An axisymmetric channel consisted of a cylindrical chamber with a nozzle in the front cover and an outlet opening in the back one. Optimal geometric dimensions of the chamber, nozzle, and outlet were chosen to achieve the greatest amplitude of the pressure fluctuations in the chamber. The nozzle length-to-diameter ratio ln/dn varied in the 0.77 ≤ ln/dn ≤ 4.17 range. The cylindrical chamber length Lch determining the air jet length ljet in the interval between the covers and Lch/dn = 0.5–3.5. The outlet opening diameter in the back cover dout varied within the limits dout/dn = 1–2.5. The optimal nozzle length ln/dn, the corresponding chamber length Lch/dn, and the outlet diameter dout/dn are determined. The air jet development within the nozzle and the formation of an inverse flow zone between the nozzle wall and the jet periphery and a chain of vortex structures in the mixing layer are considered. The generation of a jet tone of the opening on the frequency of the feedback in the jet and a family of acoustic modes on the resonance frequency with a smooth increase in the jet velocity from 0 to 70 m/s is studied.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    I. A. Beresnev and P. A. Johnson, “Elastic-wave stimulation of oil production: A review of methods and results,” Geophysics 59(6), 1000–1017 (1994).

    ADS  Article  Google Scholar 

  2. 2

    E. A. Marfin, Y. I. Kravtsov, A. A. Abdrashitov, R. N. Gataullin, and A. R. Galimzyanova, “Elastic-wave effect on oil production by in situ combustion: Field results,” Petroleum Sci. Technol. 33(15–16), 1526–1532 (2015).

    Article  Google Scholar 

  3. 3

    G. A. Maximov and A. V. Radchenko, “Modeling of the intensification of oil production by an acoustic action on the oil pool from the borehole,” Acoust. Physics 51(supplement issue 1), S102—S114 (2005).

  4. 4

    W. L. Nyborog, M. D. Burkhard, and H. K. Schilling, “Acoustical characteristics of jet-edge and jet-edge-resonator systems,” J. Acoust. Soc. Amer. 24(3), 293–304 (1952).

    ADS  Article  Google Scholar 

  5. 5

    R. C. Chanaud and A. Powell, “Some experiments concerning the hole and ring tone,” J. Acoust. Soc. Amer. 37(5), 902–911 (1965).

    ADS  Article  Google Scholar 

  6. 6

    A. Powell, “Vortex action in edgetones,” J. Acoust. Soc. Amer. 34(2), 163–166 (1962).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7

    A. S. Ginevskii, E. V. Vlasov, and R. K. Karavosov, Acoustic Control of Turbulent Jets (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  8. 8

    B. P. Konstantinov, Hydrodynamic Sound Production and Sound Propagation in Bounded Media (Nauka, Leningrad, 1974) [in Russian].

    Google Scholar 

  9. 9

    D. I. Blokhintsev, “Excitation of resonators by an air flow,” Zh. Tekhn. Fiz. 15(1–2), 63–70 (1945).

    Google Scholar 

  10. 10

    F. Chanadi, M. Arjomandi, B. Cazzolato, and A. Zander, “Interaction of a flow-excited Helmholtz resonator with a grazing turbulent boundary layer,” Experimental Thermal Fluid Sci. 58, 80–92 (2014).

    Article  Google Scholar 

  11. 11

    G. J. Benett and D. B. Stephens, “Resonant mode characterization of a cylindrical Helmholtz cavity excited by a shear layer,” J. Acoust. Soc. Amer. 141(1), 7–18 (2017).

    ADS  Article  Google Scholar 

  12. 12

    R. L. Panton and J. M. Miller, “Excitation of a Helmholtz resonator by a turbulent boundary layer,” J. Acoust. Soc. Amer. 58(4), 800–806 (1975).

    ADS  Article  Google Scholar 

  13. 13

    R. Khosropour and P. Millet, “Excitation of a Helmholtz resonator by an air jet,” J. Acoust. Soc. Amer. 88(3), 1211–1221 (1990).

    ADS  Article  Google Scholar 

  14. 14

    F. Tuerke, L. R. Pastur, D. Sciamarella, F. Lusseyran, and G. Artana, “Experimental study of double-cavity flow,” Exp. Fluids 58(7), 76 (2017). https://doi.org/10.1007/s00348-017-2360-8

    Article  MATH  Google Scholar 

  15. 15

    N. Fujisawa and Y. Takisawa, “Study of feedback control of edge tone by simultaneous flow visualization, control and PIV measurement,” Meas. Sci. Technol. 14(8), 1412–1419 (2003).

    ADS  Article  Google Scholar 

  16. 16

    N. Fujisawa, Y. Takisawa, T. Kohno, and S. Tomimatsu, “Active control of flow oscillations in jet–wedge system by acoustic feedback,” J. Fluids Structures 19(1), 111–122 (2004).

    ADS  Article  Google Scholar 

  17. 17

    S. Ziada, “Feedback control of globally unstable flows: impinging shear flows,” J. Fluids Structures 9(8), 907–923 (1995).

    ADS  Article  Google Scholar 

  18. 18

    A. Goldman and I. Saushin, “Flow pattern of double-cavity flow at high Reynolds number,” Phys. Fluids 31(6), 065101 (2019). https://doi.org/10.1063/1.5099702

    ADS  Article  Google Scholar 

  19. 19

    Th. Morel, “Experimental study of a jet-driven Helmholtz oscillator,” J. Fluids Eng. Transactions of the ASME 101(3), 383–390 (1979).

  20. 20

    A. A. Abdrashitov, E. A. Marfin, and D. V. Chachkov, “Experimental study of a borehole acoustic radiator with a ring in a long cylindrical chamber,” Acoust. Physics 64(2), 237–244 (2018).

    ADS  Article  Google Scholar 

  21. 21

    A. A. Abdrashitov, E. A. Marfin, D. V. Chachkov, and V. M. Chefanov, “Effect of nozzle shape on amplitude of well acoustic emitter generation, “ Acoust. Physics 64(4), 492–502 (2018).

    ADS  Article  Google Scholar 

  22. 22

    H. Schlichting, Boundary Layer Theory (Mc Graw-Hill, New York, 1968).

    Google Scholar 

  23. 23

    I. E. Idel’chik, Handbook on Hydraulic Resistance (Mashinostroenie, Moscow, 1992) [in Russian].

    Google Scholar 

  24. 24

    G. N. Abramovich, Applied Gas Dynamics (Defense Technical Information Center, 1973).

    Google Scholar 

  25. 25

    T. V. Artem’eva, T. M. Lysenko, A. N. Rumyantseva, and S. P. Stesin, Hydraulics, Fluid Machinery, and Hydraulic Pneumatic Actuators (Akademiya, Moscow, 2005) [in Russian].

    Google Scholar 

  26. 26

    O. S. Sergel’, Applied Dynamics of Liquids and Gases (Mashinostroenie, Moscow, 1981) [in Russian].

    Google Scholar 

  27. 27

    A. D. Altschul, Hydraulic Resistances (Nedra, Moscow, 1982) [in Russian].

    Google Scholar 

  28. 28

    M. D. Van Dyke, An Album of Fluid Motion (Parabolic Press, Stanford, 1982).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. A. Abdrashitov or E. A. Marfin.

Ethics declarations

The Authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Translated by M. Lebedev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdrashitov, A.A., Marfin, E.A. Nozzle Length Effect on the Performance of the Jet-Driven Helmholtz Oscillator. Fluid Dyn 56, 142–151 (2021). https://doi.org/10.1134/S0015462821010018

Download citation

Keywords:

  • hole tone
  • vortex sound
  • mixing layer
  • reverse flow