Skip to main content
Log in

Application of Model Kinetic Equations to Calculations of Super- and Hypersonic Molecular Gas Flows

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

For the purpose of taking the internal degrees of freedom into account, threetemperature approximating model equations, which are a generalization of the R- and ES–BGKmodels, are proposed for a diatomic gas. The surface pressure, friction, and heat transfer coefficients are compared with the direct simulation Monte Carlo (DSMC) solution in the problem of flow past a cylinder in the super- and hypersonic flow regimes. The dependence of the surface coefficients on the rotational collision number is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. D. Shevelev, N. G. Syzranova, E. V. Kustova, and E. A. Nagnibeda, “Numerical Investigations of Hypersonic Flow past Aerospace Vehicles Entering the Atmosphere of Mars,” Matem. Modelirovanie 22 (9), 23–50 (2010).

    MATH  Google Scholar 

  2. E. Josyula and W. Bailey, “Governing Equations for Weakly Ionized Plasma Flow Fields of Aerospace Vehicles,” J. Spacecraft and Rockets 40 (6), 845–857 (2003).

    Article  ADS  Google Scholar 

  3. G. Colonna, I. Armenise, D. Bruno, and M. Capitelli, “Reduction of State-to-State Kinetics to Macroscopic Models in Hypersonic Flows,” J. Thermophys. Heat Transfer 20 (3), 477–486 (2006).

    Article  Google Scholar 

  4. E. A. Bondar, A. A. Shevyrin, I. S. Chen, A. N. Shumakova, A. V. Kashkovskii, and M. S. Ivanov, “Direct Statistical Simulation of High-Temperature Chemical Reactions in Air,” Teplofiz. Aeromekh. 20 (5), 561–573 (2013).

    Google Scholar 

  5. V. A. Rykov and I. N. Larina, “KineticModel of the Boltzmann Equation for a Diatomic Gas with Rotational Degrees of Freedom,” Zh. Vychisl.Matem.Matemat. Fiz. 50 (12), 2233–2245 (2010).

    MATH  Google Scholar 

  6. A. M. Bishaev and V. A. Rykov, “Construction of the System of Kinetic Equations for a Nonideal Gas,” Teplofiz. Vysokh. Temperature 55 (1), 31–43 (2017).

    Google Scholar 

  7. C. Tantos, G. P. Ghiroldi, D. Valougeorgis, and A. Frezzotti, “Effect of Vibrational Degrees of Freedom on the Heat Transfer in PolyatomicGases Confined Between Parallel Plates,” Intern. J. Heat andMassTransfer 102, 162–173 (2016).

    Article  Google Scholar 

  8. F. G. Cheremisin, “Solution of the Kinetic Equation for High-Speed Flows,” Zh. Vychisl.Matem.Matemat. Fiz. 46 (2), 329–343 (2006).

    MathSciNet  MATH  Google Scholar 

  9. R. R. Arslanbekov, V. I. Kolobov, and A. A. Frolova, “Kinetic Solvers with Adaptive Mesh in Phase Space,” Phys. Rev. E, 063301 (2013)

    Google Scholar 

  10. C. S. Wang Chang and G. E. Uhlenbeck, Transport Phenomena in Polyatomic Gases, CM-681, Univ. of Michigan Research Report (1951).

    Google Scholar 

  11. F. G. Cheremisin, “Solution of theWang Chang–Uhlenbeck Kinetic Equation,” Dokl. Ros. Akad. Nauk 387 (4), 1 (2001).

    Google Scholar 

  12. Yu. A. Anikin and O. I. Dodulad, “Solution of the Kinetic Equation for a Diatomic Gas Using the Differential Scattering Cross-Sections Calculated by the Classical TrajectoryMethod,” Zh. Vychisl.Matem. Matemat. Fiz. 53 (7), 1193–1211 (2013).

    MATH  Google Scholar 

  13. T. F. Morse, “Kinetic Model for Gases with Internal Degrees of Freedom,” Phys. Fluids 7 (2), 159–169 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  14. L. H. Holway, “New StatisticalModels for Kinetic Theory: Methods of Construction,” Phys. Fluids 9, 1658–1673 (1966).

    Article  ADS  Google Scholar 

  15. V. A. Rykov, “A Model Kinetic Equation for a Gas with Rotational Degrees of Freedom,” Fluid Dynamics 10 (6), 959–966 (1975).

    Article  ADS  Google Scholar 

  16. P. Andries, P. LeTallec, J. Perlat, and B. Perthame, “The Gaussian-BGKModel of Boltzmann Equation with Small Prandtl Number,” Eur. J. Mech. B "—Fluids 19, 813–830 (2000).

    Article  MATH  Google Scholar 

  17. E. M. Shakhov, “Generalization of the Krook Kinetic Relaxation Equation,” Fluid Dynamics 3 (5), 95–96 (1968).

    Article  ADS  Google Scholar 

  18. V. A. Titarev, “Application of Model Kinetic Equations to Hypersonic Rarefied Gas Flows,” Computers and Fluids. Special Issue “Nonlinear Flow and Transport”, DOI 10.1016/j.compfluid.2017.06.019 (2017).

    Google Scholar 

  19. V. M. Zhdanov and M. Ya. Alievskii, Transport and Relaxation Processes in Molecular Gases (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  20. V. A. Rykov and V. N. Skobelkin, “MacroscopicDescription of theMotions of a Gas with Rotational Degrees of Freedom,” Fluid Dynamics 13 (1), 144–147 (1978).

    Article  ADS  MATH  Google Scholar 

  21. Lei Wu, C. White, T. J. Scanlon, J. M. Reese, and Y. Zhan, “A kinetic Model of the Boltzmann Equation for Non-Vibrating Polyatomic Gases,” J.FluidMech. 763, 24–50 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  22. J. G. Parker, “Rotational and Vibrational Relaxation in Diatomic Gases,” Phys. Fluids 2 (4), 449–462 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  23. J. A. Lordi and R. E. Mates, “Rotational Relaxation in Nonpolar Diatomic Gases,” Phys. Fluids 13 (2), 291–308 (1970).

    Article  ADS  MATH  Google Scholar 

  24. R. C. Millikan and R. W. White, “Systematics of Vibrational Relaxation,” J. Chem. Phys. 39 (12), 3209–3213 (1963).

    Article  ADS  Google Scholar 

  25. C. Park, “Problems of Rate Chemistry in the Flight Regimes of Aeroassisted Orbital Transfer Vehicles,” in: Thermal Design of Aeroassisted Orbital Transfer Vehicles, Progress in Astronautics and Aeronautics, Vol. 96 (AIAA. Washington. DC., 1985), p.511.

    Google Scholar 

  26. A. J. Lofthouse, Nonequilibrium Hypersonic Aerothermodynamics Using the Direct Simulation Monte Carlo and Navier-StokesModels (PhD Dissertation, Univ.Michigan, 2008).

    Google Scholar 

  27. V. I. Kolobov, R. R. Arslanbekov, V. V. Aristov, A. A. Frolova, and S. A. Zabelok, “Unified Solver for Rarefied and Continuum Flows with Adaptive Mesh and Algorithm Refinement,” J. Comput. Phys. 223, 589–608 (2007).

    Article  ADS  MATH  Google Scholar 

  28. V. A. Rykov, V. A. Titarev, and E. M. Shakhov, “Numerical Investigation of Transverse Supersonic Diatomic Gas Flow past a Plate,” Zh. Vychisl.Matem.Matemat. Fiz. 47 (1), 144–158 (2007).

    MATH  Google Scholar 

  29. V. A. Titarev, “Efficient Deterministic Modelling of Three-Dimensional Rarefied Gas Flows,” Commun. Comput. Phys. 12 (1), 161–192 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  30. V. A. Titarev, “Programm Software for Simulating Three-Dimensional Flows of aMonatomic Rarefied Gas,” Certificate of State Registration of Computer Programs No. 2017616295 (2017).

    Google Scholar 

  31. Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, and Vad. V. Voevodin, “Practice of the ‘Lomonosov’ Supercomputer,” Otkrytye Sistemy. SUBD, 7, 36–39 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Titarev.

Additional information

Original Russian Text © V.A. Titarev, A.A. Frolova, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2018, No. 4, pp. 95–112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titarev, V.A., Frolova, A.A. Application of Model Kinetic Equations to Calculations of Super- and Hypersonic Molecular Gas Flows. Fluid Dyn 53, 536–551 (2018). https://doi.org/10.1134/S0015462818040110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462818040110

Keywords

Navigation