Skip to main content
Log in

Variational Rayleigh Problem of Gas Lubrication Theory. Low Compressibility Numbers

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The two-dimensional variational problem for a gas-lubricated slider bearing is considered. In the gas layer the pressure field is described by the linear Reynolds equation which corresponds to low compressibility numbers. The boundary conditions are the conditions of vanishing the excess pressure on the boundaries of the domain. The load capacity acts as the functional of the variational problem. The system of necessary conditions of extremum which underlies the calculation algorithm is analyzed qualitatively. The present study develops radically and supplements the results of author’s studies at the modern level of theoretical and computational possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lord Rayleigh, “Notes on the Theory of Lubrication,” Phil.Mag. 35 (1), 1–12 (1918).

    Article  Google Scholar 

  2. C. J. Maday, “A Bounded Variable Approach to the Optimum Slider Bearing,” Trans.ASME. Ser.F. J. Lubr. Technol. 90 (1), 240–242 (1968).

    Article  Google Scholar 

  3. Yu. Ya. Boldyrev and V. A. Troitskii, “A Three-Dimensional Variational Problem in the Gasdynamic Theory of a Lubricant,” Fluid Dynamics 10 (5), 736–741 (1975).

    Article  ADS  Google Scholar 

  4. Yu. Ya. Boldyrev and Yu. V. Borisov, “Gas-Lubricated Sector Thrust Bearing withMaximum Load Capacity,” Fluid Dynamics 25 (6), 838–845 (1990).

    Article  ADS  MATH  Google Scholar 

  5. Yu. Ya. Boldyrev, S. V. Lupulyak, and Yu. K. Shinder, “Numerical Solution of the Variational Rayleigh Problem of Gas Lubrication Theory,” Fluid Dynamics 30 (6), 826–832 (1995).

    Article  ADS  MATH  Google Scholar 

  6. J. L. Lions, Contrôl Optimal de Syst èmes Gouvern és par des Équations aux Dériveés Partielles (Dunot Gauthier-Villars, Paris, 1968; Mir, Moscow, 1972).

    Google Scholar 

  7. K. A. Lur’e, OptimumControl in Problems of Mathematical Physics (Nauka, Moscow, 1975) [inRussian].

    Google Scholar 

  8. Yu. Ya. Boldyrev and B. S. Grigor’ev, “Numerical Solution of the Rayleigh Equation of Gas-Film Lubrication Using the Finite-Element Method,” Mashinovedenie, No. 5, 78–84 (1982).

    Google Scholar 

  9. I. E. Sipenkov, A. Yu. Filippov, Yu. Ya. Boldyrev, B. S. Grigor’ev, N. D. Zablotskii, T. A. Luchin, and T. V. Panich, Precision Gas Bearings (Izd. TsNII “Elektropribor”, Saint-Petersburg, 2007) [in Russian].

    Google Scholar 

  10. Yu. Ya. Boldyrev, Calculus of Variations and Optimization Methods. Manual (Polytechnic University Press, Saint-Petersburg, 2016) [in Russian].

    Google Scholar 

  11. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Equations of Elliptic Type (Nauka, Moscow, 1964) [in Russian].

    MATH  Google Scholar 

  12. L. G. Stepanyants, “Slow Fluid Motion in the Neighborhood of a Distorted Surface. Technical Fluid Dynamics,” Tr. LPI, 217, 117–126 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Ya. Boldyrev.

Additional information

Original Russian Text © Yu.Ya. Boldyrev, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2018, No. 4, pp. 23–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boldyrev, Y.Y. Variational Rayleigh Problem of Gas Lubrication Theory. Low Compressibility Numbers. Fluid Dyn 53, 471–478 (2018). https://doi.org/10.1134/S0015462818040043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462818040043

Keywords

Navigation