Fluid Dynamics

, Volume 53, Issue 1, pp 95–104 | Cite as

Investigation of Submerged Jets with an Extended Initial Laminar Region

  • Yu. S. Zaiko
  • A. I. Reshmin
  • S. Kh. Teplovodskii
  • A. D. Chicherina


The method of producing laminar submerged jets using a device, whose length is comparable with the jet diameter, is described. A submerged air jet, 0.12 m in diameter, produced by means of this technique is experimentally investigated in the Reynolds number range from 2000 to 13 000. Hot-wire anemometer measurements of the flow parameters and laser visualization of the flow are performed. It is shown that the device developed makes it possible to produce submerged jets with the laminar regions as long as 5.5 jet diameters. The initial regions of such jets can be used to study the development of disturbances in submerged jets, as well as used in medicine and engineering in organizing various gasdynamic curtains which produce zones with given properties with respect to purity and composition inside another gas media.

Key words

submerged laminar jets hot-wire anemometry laser visualization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. N. Abramovich, Theory of Turbulent Jets [in Russian] (Nauka, Moscow, 1960).Google Scholar
  2. 2.
    S. C. Crow and F. H. Champagne, “Orderly Structures in Jet Turbulence,” J. FluidMech. 48 (3), 547 (1971).ADSCrossRefGoogle Scholar
  3. 3.
    M. Yu. Zaitsev, V. F. Kopiev, and S. A. Chernyshev, “Experimental Investigation of the Role of Instability Waves in Noise Radiation by Supersonic Jets,” Fluid Dynamics 44 (4), 587 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    A. Veser, M. Kuznetsov, G. Fast, A. Friedrich, N. Kotchourko, G. Stern, M. Schwall, and W. Breitung, “The Structure and Flame Propagation Regimes in Turbulent Hydrogen Jets,” Int. J. Hydrogen Energy 36 (3), 2351 (2011).CrossRefGoogle Scholar
  5. 5.
    E. N. da C. Andrade, “The Velocity Distribution in a Liquid-into-Liquid Jet, Part 2: The Plane Jet,” Proc. Phys. Soc. 51, 784 (1939).ADSCrossRefGoogle Scholar
  6. 6.
    H. Sato, “The Stability and Transition of a Two-Dimensional Jet,” J. Fluid Mech. 7 (1), 53 (1959).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    G. Silcock, “On the Stability of Parallel Stratified Shear Flows,” Ph. D. Dissertation, Univ. Bristol (1975).Google Scholar
  8. 8.
    P. G. Drazin and W. H. Reid, Hydrodynamic Stability (Cambridge Univ. Press, Cambridge, 2004).CrossRefzbMATHGoogle Scholar
  9. 9.
    G. K. Batchelor and A. E. Gill, “Analysis of the Stability of Axisymmetric Jets,” J. Fluid Mech. 14 (4), 529 (1962).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lord Rayleigh, Scientific Papers (Cambridge Univ. Press, Cambridge, 2004), Vol. 3, p.575.Google Scholar
  11. 11.
    M. Lessen and P. J. Singh, “The Stability of Axisymmetric Free Shear Layers,” J. Fluid Mech. 60 (3), 433 (1973).ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    K. B. M. Q. Zaman and A. K. M. F. Hussain, “Turbulence Suppression in Free Shear Flows by Controlled Excitation,” J. Fluid Mech. 103, 133 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    A. K. M. F. Hussain and A. Z. Hasan, “Turbulence Suppression in Free Turbulent Shear Flows under Controlled Excitation, Part 2: Jet-Noise Reduction,” J. FluidMech. 150, 159 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    G. R. Grek, V. V. Kozlov, and Yu. A. Litvinenko, Stability of Subsonic Jet Flows and Combustion [in Russian] (Novosibirsk Univ. Press, Novosibirsk, 2013).Google Scholar
  15. 15.
    G. V. Kozlov, G. R. Grek, A. M. Sorokin, and Yu. A. Litvinenko, “Effect of the Initial Conditions in the Nozzle Exit Section on the Round Jet Structure,” Teplofiz. Aeromekh. 15 (1), 59 (2008).Google Scholar
  16. 16.
    V. Kozlov, G. Grek, Yu. Litvinenko, G. Kozlov, and M. Litvinenko, “Round and Plane Jets in a Transverse Acoustic Field,” J. Engineering Thermophysics 20 (3), 272 (2011).CrossRefGoogle Scholar
  17. 17.
    M. V. Litvinenko, Yu. A. Litvinenko, G. V. Kozlov, and V. V. Vikhorev, “Experimental Investigation of a Submerged Round Jet with Dean Vortices,” Vestn. Novosibirsk Gos. Un-ta. Ser. Fizika 9 (2), 128 (2014).Google Scholar
  18. 18.
    V. V. Lemanov, V. I. Terekhov, K. A. Sharov, and A. A. Shumeiko, “Experimental Investigation of Submerged Jets at Low Reynolds Numbers,” Pisma Zh. Tekhn. Fiz. 39 (9), 34 (2013).Google Scholar
  19. 19.
    L. Prandtl and O. G. Tietjens, Fundamentals of Hydro-and Aeromechanics (McGraw-Hill, New York, 1934).zbMATHGoogle Scholar
  20. 20.
    O. I. Navoznov, A. A. Pavel’ev, and A. V. Yatsenko, “The Transition to Turbulence in Submerged Jets and Wakes,” Fluid Dynamics 7 (4), 672 (1972).ADSCrossRefGoogle Scholar
  21. 21.
    A. I. Reshmin, S. Kh. Teplovodskii, and V. V. Trifonov, “Short Round Diffuser with a High Area Ratio and a Permeable Partition,” Fluid Dynamics 47 (5), 583 (2012).ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    A. Reshmin, A. Sudarikova, S. Teplovodskii, and J. Zayko, “Technology for Formation of Axisymmetric Free Jets with Long Laminar Region,” J. Phys. Conf. Ser. 894, 012080 (2017).CrossRefGoogle Scholar
  23. 23.
    M. E. Deutsch, Engineering Gasdynamics [in Russian] (Gosenergoizdat, Moscow, 1961).Google Scholar
  24. 24.
    A. I. Reshmin, S. Kh. Teplovodskii, and V. V. Trifonov, “Turbulent Flow in a Circular Separationless Diffuser at Reynolds Numbers Smaller than 2000,” Fluid Dynamics 46 (2), 278 (2011).ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. S. Zaiko
    • 1
  • A. I. Reshmin
    • 1
  • S. Kh. Teplovodskii
    • 1
  • A. D. Chicherina
    • 1
  1. 1.Institute of MechanicsState Moscow UniversityMoscowRussia

Personalised recommendations