Fluid Dynamics

, Volume 53, Issue 1, pp 21–33 | Cite as

Vertical Momentum Fluxes Induced by Weakly Nonlinear Internal Waves on the Shelf

  • D. I. Vorotnikov
  • A. A. Slepyshev


Free inertia-gravity internal waves in a two-dimensional stratified flow of an ideal fluid with a vertical velocity shear are considered in the Boussinesq approximation. The boundary-value problem for the amplitude of the vertical velocity of internal waves has complex coefficients; therefore, the wave frequency has an imaginary correction and the eigenfunction is complex. It is shown that the wave is weakly damped, the vertical wave momentum fluxes being nonzero and can be greater than the turbulent fluxes. The Stokes drift velocity component transverse to the direction of wave propagation is nonzero and less than the longitudinal component by an order of magnitude. The dispersion curves of the first two modes are cut off in the low-frequency domain due to the influence of critical layers in which the wave frequency taken with the Doppler shift is equal to the inertial frequency.

Key words

wave momentum fluxes Stokes drift critical layers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Borovikov, V. V. Bulatov, E. G. Morozov, and P. G. Tamaio, “Nonspectral and Spectral Investigation of Internal Tidal Waves in the Ocean (with Reference to the Mesopolygon Experiment),” Okeanologiya 38 (3), 343–348 (1998).Google Scholar
  2. 2.
    A. E. Bukatov and L. V. Cherkesov, Waves in Inhomogeneous Sea (Naukova Dumka, Kiev, 1983) [in Russian].zbMATHGoogle Scholar
  3. 3.
    N. A. Panteleev, I. N. Okhotnikov, and A. A. Slepyshev, Small-Scale Structure andDynamics of the Ocean (Naukova Dumka, Kiev, 1993) [in Russian].Google Scholar
  4. 4.
    V. S. Maderich, V. I. Nikishov, and A. G. Stetsenko, Dynamics of Internal Mixing in a Stratified Medium (Naukova Dumka, Kiev, 1988) [in Russian].Google Scholar
  5. 5.
    V. A. Borovikov, V. V. Bulatov, and Y. V. Vladimirov, “Internal Gravity Waves Exited by a Body Moving in a Stratified Fluid,” Fluid Dynamics Research 15 (5), 325–336 (1995).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    V. A. Borovikov, V. V. Bulatov, Yu. V. Vladimirov, I. L. Isaev, Yu. P. Lomanov, and V. A. Frost, ”Processing and Analysis of Measurements of Internal Waves in the West Sahara Shelf Area,” Okeanologiya 33 (4), 532–535 (1993).Google Scholar
  7. 7.
    V. V. Bulatov and Yu. V. Vladimirov, Dynamics of NonharmonicWave Packets in StratifiedMedia (Nauka, Moscow, 2010) [in Russian].Google Scholar
  8. 8.
    Yu. D. Borisenko, A. G. Voronovich, A. I. Leonov, and Yu. Z. Miropol’skii, “On the Theory of Non-stationary, Weakly Nonlinear Internal Waves in a Stratified Fluid,” Izv. Akad. Nauk SSSR, Fiz. Atmosfery Okeana 12 (3), 293–301 (1976).Google Scholar
  9. 9.
    R. Grimshaw, “The Modulation of an Internal Gravity Wave Packet and the Resonance with the Mean Motion,” Stud. Appl.Math. 56, 241–266 (1977).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A. K. Liu and D. J. Benney, “The Evolution of Nonlinear Wave Trains in Stratified Shear Flows,” Stud. In Appl.Math. 64, 247–269 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    S. I. Badulin, L. Sh. Tsimring, and V. I. Shrira, “Capture and Vertical Focusing of Internal Waves in the Pycnocline by Horizontal Inhomogeneities and Flows,” Dokl. Akad. Nauk SSSR 273 (2), 459–463 (1983).zbMATHGoogle Scholar
  12. 12.
    P. H. Le Blond and L. A. Mysak, Waves in the Ocean (Elsevier, Amsterdam, 1978;Mir, Moscow, 1981), Vol.2.Google Scholar
  13. 13.
    P. H. Le Blond, “On Damping of Internal GravityWaves in a Continuously Stratified Ocean,” J. FluidMech. 25 (1), 121–142 (1966).ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Nosova and A. A. Slepyshev, “Vertical Fluxes Induced byWeakly Nonlinear InternalWaves on a Shelf,” Fluid Dynamics 50 (1), 12–21 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. A. Slepyshev, “Vertical Fluxes Induced byWeakly Nonlinear InternalWaves in Baroclinic Flow,” Morskoi Gidrofiz. Zh., 1, 64–78 (2015).Google Scholar
  16. 16.
    R. Grimshaw, “The Effect of Dissipative Processes on Mean Flows Induced by Internal Gravity-Waves Packets,” J. Fluid Mech. 115, 347–378 (1982).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. A. Slepyshev, “Vertical Momentum Transfer by Internal Waves with Regard to the Turbulent Viscosity and Diffusion,” Izv. Ross. Akad. Nauk, Fiz. Atmosfery Okeana 52 (3), 301–308 (2016).Google Scholar
  18. 18.
    V. M. Kamenkovich, Fundamentals of Ocean Dynamics (Gidrometeoizdat, Leningrad, 1973) [in Russian].Google Scholar
  19. 19.
    Report of the Studies during the 44th Voyage (3rd Stage) of the Mikhail Lomonosov Research Ship, August 7–September 15, 1985 (MGI AN USSR, Sevastopol, 1985), Vol. 1 [in Russian].Google Scholar
  20. 20.
    Yu. Z. Miropol’skii, Dynamics of Internal GravityWaves in the Ocean (Gidrometeoizdat, Leningrad, 1981) [in Russian].Google Scholar
  21. 21.
    W. H. Banks, P. G. Drazin, and M. B. Zaturska, “On the NormalModes of Parallel Flow of Inviscid Stratified Fluid,” J. Fluid Mech. 75 (1), 149–171 (1976).ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    J. B. Booker and F. P. Brethertone, “The Critical Layer for Internal GravityWaves in a Shear Flow,” J. Fluid Mech. 27 (4), 513–539 (1967).ADSCrossRefGoogle Scholar
  23. 23.
    W. L. Jones, “Propagation of InternalWaves in Fluids with Shear Flow and Rotation,” J. FluidMech. 30 (3), 439–448 (1967).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    G. S. Dvoryaninov, Wave Effects in the Boundary Layers of the Atmosphere and the Ocean (Naukova Dumka, Kiev, 1982) [in Russian].Google Scholar
  25. 25.
    M. S. Longuet-Higgins, “On the Transport ofMass by Time Varying Ocean Current,” Deep Sea Res. 16 (5), 431–447 (1969).Google Scholar
  26. 26.
    A. B. Ezerskii and V. V. Papko, “Laboratory Investigation of Large-Scale Potential Flows Induced by a SurfaceWave Packet,” Izv. Akad. Nauk SSSR, Fiz. Atmosfery Okeana 22 (9), 979–986 (1986).Google Scholar
  27. 27.
    A. L. Fabrikant, Momentum of a Wave Packet in a Medium and Induced Mean Flows. Preprint No. 183 (Institute of Applied Physics of the Academy of Sciences of the USSR, Gor’kii, 1988) [in Russian].Google Scholar
  28. 28.
    Yu. A. Stepanyants and A. L. Fabrikant, Wave Propagation in Shear Flows (Fizmatlit, Moscow, 1996).zbMATHGoogle Scholar
  29. 29.
    L. A. Ostrovskii and A. I. Potapov, Introduction to Theory of Modulated Waves (Fizmatlit, Moscow, 2003).Google Scholar
  30. 30.
    M. McIntire, “Myth on the’ Wave Momentum’,” in: Modern Hydrodynamics. Advances and Problems (Mir, Moscow, 1984) [in Russian], pp. 454–476.Google Scholar
  31. 31.
    V. A. Ivanov, A. S. Samodurov, A. M. Chukharev, and A. V. Nosova, “Intensification of the Vertical Turbulent Transfer in the Regions of the Joint between the Shelf and the Continental Slope in the Black Sea,” Dopovidi Naz. Akad. Nauk Ukrainy 6, 108–112 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Physics DepartmentLomonosov Moscow State UniversityMoscowRussia
  2. 2.Marine Hydrophysical Institute of the Russian Academy of SciencesSevastopolRussia
  3. 3.Branch of Lomonosov Moscow State UniversitySevastopolRussia

Personalised recommendations