Fluid Dynamics

, Volume 53, Issue 1, pp 59–64 | Cite as

Mechanism of the Emergence of Rogue Waves As a Result of the Interaction between Internal Solitary Waves in a Stratified Basin

  • E. G. Shurgalina


The features of the interaction between internal solitary waves are investigated within the framework of the completely integrable Gardner equation with positive cubic nonlinearity. It is shown that the soliton polarity affects radically the result of the interaction between the solitons. The role of the pair interactions between solitons of different polarities proceeding when rogue waves emerge in the soliton fields in a stratified basin is demonstrated. The effect of such interactions on the higher-order moments of the wave field is studied.

Key words

internal waves soliton Gardner equation rogue waves coastal area 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. Z. Miropol’skii, Dynamics of Internal GravityWaves in the Ocean (Gidrometeoizdat, Leningrad, 1981) [in Russian].Google Scholar
  2. 2.
    T. Kakutani and N. Yamasaki, “Solitary Waves on a Two-Layer Fluid,” J. Phys. Soc. Japan 45, 674–679 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    C. Koop and G. Butler, “An Investigation of Internal SolitaryWaves in a Two-Fluid System,” J. FluidMech. 112, 225–251 (1981).ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    P. Guyenne, “Large-Amplitude Internal Solitary Waves in a Two-Fluid Model,” C.R. Mecanique, 334–341 (2006).Google Scholar
  5. 5.
    W. Choi and R. Camassa, “Fully Nonlinear Internal Waves in a Two-Fluid System,” J. Fluid Mech. 396, 1–36 (1999).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    M. Funakoshi and M. Oikawa, “Long Internal Waves of Large Amplitude in a Two-Layer Fluid,” J. Phys. Soc. Japan 55, 128–144 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    J. A. Knauss, Introduction to Physical Oceanography (Prentice Hall, 1996).Google Scholar
  8. 8.
    R. Grimshaw, E. Pelinovsky, and T. Talipova, “Modeling Internal Solitary Waves in the Coastal Ocean,” Surveys in Geophysics 28, 273–298 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    R. Grimshaw, E. Pelinovsky, T. Talipova, and A. Sergeeva, “Rogue InternalWaves in the Ocean: LongWave Model,” Eur. Phys. J. Spec. Top. 185, 195–208 (2010).CrossRefGoogle Scholar
  10. 10.
    E. N. Pelinovsky and A. V. Slunyaev, “Generation and Interaction of Large-Amplitude Solitons,” Pis’ma v Zh. Eksp. Teor. Fiz. 67, 628–633 (1998).Google Scholar
  11. 11.
    A. V. Slunyaev and E. N. Pelinovsky, “Dynamics of Large-Amplitude Solitons,” Zh. Eksp. Teor. Fiz. 116, 318–335 (1999).Google Scholar
  12. 12.
    A. V. Slunyaev, “Dynamics of Large-Amplitude Localized Waves in a Weakly Dispersive Medium with Quadratic and Cubic Nonlinearity,” Zh. Eksp. Teor. Fiz. 119, 606–612 (2001).Google Scholar
  13. 13.
    E. G. Shurgalina and E. N. Pelinovsky, “Nonlinear Dynamics of a Soliton Gas: Modified Korteweg-de Vries Equation Framework,” Phys. Lett. A 380 (24), 2049–2053 (2016).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Grimshaw, E. Pelinovsky, T. Talipova, and O. Kurkina, “Internal SolitaryWaves: Propagation, Deformation, and Disintegration,” Nonlinear Processes in Geophysics 17 (6), 633–649 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    R. Grimshaw, “Internal Solitary Waves (Chapter 1),” in: R. Grimshaw (Ed.), Environmental Stratified Flows (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001), pp. 1–28.Google Scholar
  16. 16.
    E. N. Pelinovsky, O. E. Polukhina, and K. Lamb, “Nonlinear Internal Waves in Ocean Stratified in Density and Flow,” Okeanologiya 40 (6), 805–815 (2000).Google Scholar
  17. 17.
    T. G. Talipova, E. N. Pelinovsky, K. Lamb, R. Grimshaw, and P. Holloway, “Effects of Cubic Nonlinearity in Propagation of Intense InternalWaves,” Dokl. Akad. Nauk SSSR 364 (6), 824–827 (1996).Google Scholar
  18. 18.
    E. N. Pelinovsky, E. G. Shurgalina, A. V. Sergeeva, T. G. Talipova, G. A. El, and R. H. J. Grimshaw, “Two-Soliton Interaction as an Elementary Act of Soliton Turbulence in Integrable Systems,” Phys. Lett. A 377, Nos. 3–4, 272–275 (2013).ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    E. N. Pelinovsky and E. G. Shurgalina, “Two-Soliton Interaction within the Framework of the Modified Korteweg-de Vries Equation,” Izv. Vuzov. Radiofizika 57 (10), 825–833 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny Novgorod State Technical University n.a. R.E. AlekseevNizhny NovgorodRussia

Personalised recommendations