Skip to main content
Log in

Sustainment of Oscillations in Localized Turbulent Structures in Pipes

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The solution of the Navier–Stokes equations which reproduces some qualitative features of localized turbulent structures developed in circular pipes at transitional Reynolds numbers is numerically investigated. In the phase space this solution corresponds to the limiting state of the solution which evolves along the separatrix dividing the regions of attraction of the solutions corresponding to the laminar and turbulent flow regimes. Relative simplicity of the spatial and temporal behavior of the limiting solution on the separatrix makes it possible to investigate it in detail. In particular, the nonlinear mechanism of the onset of streamwise vortices responsible for sustainment of near-wall streaks whose instability ensures the presence of fluctuations is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Reynolds, “An Experimental Investigation of the Circumstances which DetermineWhether the Motion of Water Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel Channels,” Proceedings of the Royal Society of London 35 (224–226), 84–99 (1883).

    Article  ADS  MATH  Google Scholar 

  2. I. J. Wygnanski and F. H. Champagne, “On Transition in a Pipe. Pt. 1. The Origin of Puffs and Slugs and a Flow in a Turbulent Slug,” J. Fluid Mech. 59 (2), 281–335 (1973).

    Article  ADS  Google Scholar 

  3. I. Wygnanki, M. Sokolov, and D. Friedman, “On Transition in a Pipe. Pt. 2. The Equilibrium Puff,” J. Fluid Mech. 69 (2), 283–304 (1975).

    Article  ADS  Google Scholar 

  4. J. Peixinho and T. Mullin, “Decay of Turbulence in Pipe Flow,” Phys. Rev. Lett. 96 (9), 094501 (2006).

    Article  ADS  Google Scholar 

  5. B. Hof, J. Westerweel, T. M. Schneider, and B. Eckhardt, “Finite Lifetime of Turbulence in Shear Flows,” Nature 443 (7107), 59–62 (2006).

    Article  ADS  Google Scholar 

  6. A. P. Willis and R. R. Kerswell, “Critical Behavior in the Relaminarization of Localized Turbulence in Pipe Flow,” Phys. Rev. Lett. 98 (1), 014501 (2007).

    Article  ADS  Google Scholar 

  7. B. Hof, A. de Lozar, D. J. Kuik, and J. Westerweel, “Repeller or Attractor? Selecting the Dynamical Model for the Onset of Turbulence in Pipe Flow,” Phys. Rev. Lett. 101 (21), 214501 (2008).

    Article  ADS  Google Scholar 

  8. D. J. Kuik, C. Poelma, and J. Westerweel, “Quantitative Measurement of the Lifetime of Localized Turbulence in Pipe Flow,” J. FluidMech. 645, 529–539 (2010).

    Article  ADS  MATH  Google Scholar 

  9. K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, “The Onset of Turbulence in Pipe Flow,” Science 333 (6039), 192–196 (2011).

    Article  ADS  Google Scholar 

  10. B. Hof, A. de Lozar, M. Avila, X. Tu, and T. M. Schneider, “Eliminating Turbulence in Spatially Intermittent Flows,” Science 327 (592), 1491–1494 (2010).

    Article  ADS  Google Scholar 

  11. M. Shimizu and S. Kida, “A Driving Mechanism of a Turbulent Puff in Pipe Flow,” Fluid Dyn. Res. 41 (4), 045501 (2009).

    Article  ADS  MATH  Google Scholar 

  12. V. G. Priymak and T. Miyazaki, “Direct Numerical Simulation of Equilibrium Spatially Localized Structures in Pipe Flow,” Phys. Fluids 16 (12), 4221–4234 (2004).

    Article  ADS  MATH  Google Scholar 

  13. G. Kawahara, M. Uhlmann, and L. Van Veen, “The Significance of Simple Invariant Solutions in Turbulent Flows,” Annual Review of Fluid Mechanics 44, 203–225 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M. Avila, F. Mellibovsky, N. Roland, and B. Hof, “Streamwise-Localized Solutions at the Onset of Turbulence in Pipe Flow,” Phys. Rev. Lett. 110 (22), 224502 (2013).

    Article  ADS  Google Scholar 

  15. N. V. Nikitin and V. O. Pimanov, “Numerical Study of Localized Turbulent Structures in a Pipe,” Fluid Dynamics 50 (5), 655–664 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Nikitin, “Finite-Difference Method for IncompressibleNavier–Stokes Equations in Arbitrary Orthogonal Coordinates,” J. Comput. Phys. 217 (2), 759–781 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. N. Nikitin, “Third-Order-Accurate Semi-Implicit Runge–Kutta Scheme for IncompressibleNavier–Stokes Equations,” Int. J. Num. Meth. Fluids 51 (2), 221–233 (2006).

    Article  MATH  Google Scholar 

  18. J. D. Skufca, J. A. Yorke, and B. Eckhardt, “Edge of Chaos in a Parallel Shear Flow,” Phys. Rev. Lett. 96 (17), 174101 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Nikitin.

Additional information

Original Russian Text © N.V. Nikitin, V.O. Pimanov, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2018, No. 1, pp. 68–76.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, N.V., Pimanov, V.O. Sustainment of Oscillations in Localized Turbulent Structures in Pipes. Fluid Dyn 53, 65–73 (2018). https://doi.org/10.1134/S0015462818010111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462818010111

Key words

Navigation