Fluid Dynamics

, Volume 53, Issue 1, pp 65–73 | Cite as

Sustainment of Oscillations in Localized Turbulent Structures in Pipes

  • N. V. Nikitin
  • V. O. Pimanov


The solution of the Navier–Stokes equations which reproduces some qualitative features of localized turbulent structures developed in circular pipes at transitional Reynolds numbers is numerically investigated. In the phase space this solution corresponds to the limiting state of the solution which evolves along the separatrix dividing the regions of attraction of the solutions corresponding to the laminar and turbulent flow regimes. Relative simplicity of the spatial and temporal behavior of the limiting solution on the separatrix makes it possible to investigate it in detail. In particular, the nonlinear mechanism of the onset of streamwise vortices responsible for sustainment of near-wall streaks whose instability ensures the presence of fluctuations is revealed.

Key words

Navier–Stokes equations direct numerical simulation pipe flow turbulent puffs limiting solution on a separatrix near-wall streaks streamwise vortices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Reynolds, “An Experimental Investigation of the Circumstances which DetermineWhether the Motion of Water Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel Channels,” Proceedings of the Royal Society of London 35 (224–226), 84–99 (1883).ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    I. J. Wygnanski and F. H. Champagne, “On Transition in a Pipe. Pt. 1. The Origin of Puffs and Slugs and a Flow in a Turbulent Slug,” J. Fluid Mech. 59 (2), 281–335 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    I. Wygnanki, M. Sokolov, and D. Friedman, “On Transition in a Pipe. Pt. 2. The Equilibrium Puff,” J. Fluid Mech. 69 (2), 283–304 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    J. Peixinho and T. Mullin, “Decay of Turbulence in Pipe Flow,” Phys. Rev. Lett. 96 (9), 094501 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    B. Hof, J. Westerweel, T. M. Schneider, and B. Eckhardt, “Finite Lifetime of Turbulence in Shear Flows,” Nature 443 (7107), 59–62 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    A. P. Willis and R. R. Kerswell, “Critical Behavior in the Relaminarization of Localized Turbulence in Pipe Flow,” Phys. Rev. Lett. 98 (1), 014501 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    B. Hof, A. de Lozar, D. J. Kuik, and J. Westerweel, “Repeller or Attractor? Selecting the Dynamical Model for the Onset of Turbulence in Pipe Flow,” Phys. Rev. Lett. 101 (21), 214501 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    D. J. Kuik, C. Poelma, and J. Westerweel, “Quantitative Measurement of the Lifetime of Localized Turbulence in Pipe Flow,” J. FluidMech. 645, 529–539 (2010).ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, “The Onset of Turbulence in Pipe Flow,” Science 333 (6039), 192–196 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    B. Hof, A. de Lozar, M. Avila, X. Tu, and T. M. Schneider, “Eliminating Turbulence in Spatially Intermittent Flows,” Science 327 (592), 1491–1494 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    M. Shimizu and S. Kida, “A Driving Mechanism of a Turbulent Puff in Pipe Flow,” Fluid Dyn. Res. 41 (4), 045501 (2009).ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    V. G. Priymak and T. Miyazaki, “Direct Numerical Simulation of Equilibrium Spatially Localized Structures in Pipe Flow,” Phys. Fluids 16 (12), 4221–4234 (2004).ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    G. Kawahara, M. Uhlmann, and L. Van Veen, “The Significance of Simple Invariant Solutions in Turbulent Flows,” Annual Review of Fluid Mechanics 44, 203–225 (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    M. Avila, F. Mellibovsky, N. Roland, and B. Hof, “Streamwise-Localized Solutions at the Onset of Turbulence in Pipe Flow,” Phys. Rev. Lett. 110 (22), 224502 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    N. V. Nikitin and V. O. Pimanov, “Numerical Study of Localized Turbulent Structures in a Pipe,” Fluid Dynamics 50 (5), 655–664 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    N. Nikitin, “Finite-Difference Method for IncompressibleNavier–Stokes Equations in Arbitrary Orthogonal Coordinates,” J. Comput. Phys. 217 (2), 759–781 (2006).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    N. Nikitin, “Third-Order-Accurate Semi-Implicit Runge–Kutta Scheme for IncompressibleNavier–Stokes Equations,” Int. J. Num. Meth. Fluids 51 (2), 221–233 (2006).CrossRefzbMATHGoogle Scholar
  18. 18.
    J. D. Skufca, J. A. Yorke, and B. Eckhardt, “Edge of Chaos in a Parallel Shear Flow,” Phys. Rev. Lett. 96 (17), 174101 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of MechanicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations