Fluid Dynamics

, Volume 53, Issue 1, pp 74–85 | Cite as

Distinctive Features of the Distributions of the Body Force Produced by a Plasma Actuator

  • A. P. Kuryachii
  • S. V. Manuilovich
  • D. A. Rus’yanov
  • S. L. Chernyshev
Article
  • 9 Downloads

Abstract

Basing upon the assumption on the solenoidality of the field of the time-average body force produced by a surface dielectric barrier discharge analytical expressions for the spatial distributions of the components of this force are proposed. The calculations of the dischargegenerated near-surface jet are in good agreement with the experiment. The distinctive features of spatial distributions of the body force components calculated from the data of the velocity field measurements are physically explained.

Key words

dielectric barrier discharge plasma actuator body force near-surface jet Navier–Stokes equations turbulence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Moreau, “Airflow Control by Non-Thermal Plasma Actuators,” J. Phys. D:Appl. Phys. 40, 605 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    T. C. Corke, M. L. Post, and D. M. Orlov, “SDBD Plasma Enhanced Aerodynamics: Concepts, Optimization, and Application,” Progr. Aerospace Sci. 43, 193 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    T. C. Corke, C. L. Enloe, and S. P. Wilkinson, “Dielectric Barrier Discharge Plasma Actuators for Flow Control,” Annu. Rev. Fluid Mech. 42, 505 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    J.-J. Wang, K.-S. Choi, L.-H. Feng, T. N. Jukes, and R. D. Whalley, “Recent Developments in DBD Plasma Flow Control,” Progr. Aerospace Sci. 62, 52 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    N. Benard and E. Moreau, “Electrical and Mechanical Characteristics of Surface AC Dielectric Barrier Discharge Plasma Actuators Applied to Airflow Control,” Exp. Fluids 55, 1846 (2014).CrossRefGoogle Scholar
  6. 6.
    J. Kriegseis, D. Simon, and S. Grundmann, “Towards In-Flight Applications? A Review on Dielectric Barrier Discharge-Based Boundary-Layer Control,” Trans. ASME. Appl.Mech. Rev. 68, 020802 (2016).CrossRefGoogle Scholar
  7. 7.
    F. O. Thomas, T. C. Corke, M. Iqbal, A. Kozlov, and D. Schatzman, “Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control,” AIAA J. 47, 2169 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    J. P. Boeuf, Y. Lagmich, T. Unfer, Th. Callegari, and L. C. Pitchford, “ElectrohydrodynamicForce in Dielectric Barrier Discharge Plasma Actuators,” J. Phys. D:Appl. Phys. 40, 682 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    K. P. Singh and S. Roy, “Modeling Plasma Actuators with Air Chemistry for Effective Flow Control,” J. Appl. Phys. 101, 123308 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Likhanskii, M. N. Shneider, S. O. Macheret, and R. B. Miles, “Modeling of DielectricBarrier Discharge Plasma Actuator in Air,” J. Appl. Phys. 103, 055505 (2008).CrossRefGoogle Scholar
  11. 11.
    V. P. Soloviev and V. M. Krivtsov, “Surface Barrier Discharge Modelling for Aerodynamic Applications,” J. Phys. D:Appl. Phys. 42, 125208 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    J. S. Shang and P. C. Huang, “Modeling AC Dielectric Barrier Discharge,” J. Appl. Phys. 107, 113302 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    A. R. Hoskinson and N. Hershkowitz, “Modelling of Dielectric Barrier Discharge Plasma Actuators with Thick Electrodes,” J. Phys. D:Appl. Phys. 44, 085202 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    A. P. Kuryachii, D. A. Rus’yanov, V. V. Skvortsov, and S. L. Chernyshev, “About Increase of Efficiency of PlasmaMultiactuator System for Boundary Layer Control,” Uch. Zap. TsAGI 44 (3), 3 (2013).Google Scholar
  15. 15.
    Y. B. Suzen, P. G. Huang, J. D. Jacob, and D. E. Ashpis, “Numerical Simulations of Plasma Based Flow Control Applications,” AIAA Paper No. 4633 (2005).CrossRefGoogle Scholar
  16. 16.
    I. H. Ibrahim and M. Skote, “Simulations of the Linear Plasma Synthetic Jet Actuator Utilizing a Modified Suzen–HuangModel,” Phys. Fluids 24, 113602 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    A. P. Kuryachii, S. V. Manuilovich, D. A. Rus’yanov, V. V. Skvortsov, and S. L. Chernyshev, “Estimation of the Possibility of Controlling Laminar-Turbulent Transition on a SweptWing Using Plasma Actuators,” Uch. Zap. TsAGI 45 (4), 3 (2014).Google Scholar
  18. 18.
    M. V. Ustinov, “NumericalModeling of the Laminar-Turbulent Transition Control Using a Dielectric Barrier Discharge,” Fluid Dynamics 51 (2), 200 (2016).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    A. F. Kiselev, A. P. Kuryachii, and S. L. Chernyshev, “Excitation of Controllable Perturbations in the Three-Dimensional Boundary Layer Using Plasma Actuators,” Fluid Dynamics 52 (2), 264 (2017).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    N. Benard, M. Caron, and E. Moreau, “Evaluation of the Time-Resolved EHD Force Produced by a Plasma Actuator by Particle Image Velocimetry—A Parametric Study,” J. Phys.: Conf. Ser. 646, 012055 (2015).Google Scholar
  21. 21.
    B. Wilke, “Aerodynamische Strömungssteuerung mittels dielektrischen Barrierentladungs-Plasmaaktuatoren,” Ph. D. Thesis. Technische Univ. Darmstadt, DLR Göttingen (2009).Google Scholar
  22. 22.
    T. Albrecht, T. Weier, G. Gerbeth, H. Metzkes, and J. Siller, “AMethod to Estimate the Planar, Instantaneous Body Force Distribution from Velocity Field Measurements,” Phys. Fluids 23, 021702 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    J. Kriegseis, C. Schwarz, A. Duchmann, S. Grundmann, and C. Tropea, “PIV-Based Estimation of DBD Plasma-Actuator Force Terms,” AIAA Paper No. 0411 (2012).CrossRefGoogle Scholar
  24. 24.
    J. Kriegseis, C. Schwarz, C. Tropea, and S. Grundmann, “Velocity-Information-Based Force-TermEstimation of Dielectric-Barrier Discharge Plasma Actuators,” J. Phys. D:Appl. Phys. 46, 055202 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    I. Maden, R. Maduta, J. Kriegseis, S. Jakirlić, C. Schwarz, S. Grundmann, and C. Tropea, Int. J. Heat Fluid Flow 41, 80 (2013).CrossRefGoogle Scholar
  26. 26.
    P. C. Dörr and M. J. Kloker, “Numerical Investigation of Plasma Actuator Force-Term Estimations from Flow Experiments,” J. Phys. D:Appl. Phys. 48, 395203 (2015).CrossRefGoogle Scholar
  27. 27.
    N. Benard, A. Debien, and E. Moreau, “Time-DependentVolume Force Produced by a Non-Thermal Plasma Actuator from Experimental Velocity Field,” J. Phys. D:Appl. Phys. 46, 245201 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    I. Maden, K. Barckmann, J. Kriegseis, J. Jakirlić, C. Tropea, and S. Grundmann, “Evaluating Force Field Induced by a Plasma Actuator Using the Reynolds-Averaged Navier–Stokes Equation,” AIAA Paper No. 0326 (2014).Google Scholar
  29. 29.
    S. V. Manuilovich, “Role of the Pressure Gradient in Flows Controlled by a Near-Wall Body Force,” Fluid Dynamics 51 (4), 482 (2016).MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    S. V. Manuilovich, “Longitudinally Periodic Viscous Flows Generated by a Near-Wall Volume Force,” Fluid Dynamics 50 (4), 514 (2015).MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    J. P. Boeuf, Y. Lagmich, and L. C. Pitchford, “Contribution of Positive and Negative Ions ot the Electrohydrodynamic Force in a Dielectric Barrier Discharge Plasma Actuator Operating in Air,” J. Appl. Phys. 106, 023115 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    A. B. Vatazhin, V. I. Grabovskii, V. A. Likhter, and V. I. Shul’gin, Electrogasdynamic Flows [in Russian], Nauka, Moscow (1983).Google Scholar
  33. 33.
    V. R. Soloviev, “Analytical Estimation of the Thrust Generated by a Surface Dielectric Barrier Discharge,” J. Phys. D:Appl. Phys. 45, 025205 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    A. P. Kuryachii, S. V. Manuilovich, and D. A. Rus’yanov, “Approximation of the Distributions of the Body Force Produced by a Plasma Actuator,” Uch. Zap. Tsagi 47 (5), 29 (2016).Google Scholar
  35. 35.
    D. H. Chun and W. H. Schwarz, “Stability of the Plane Incompressible ViscousWall Jet Subjected to Small Disturbances,” Phys. Fluids 10, 911 (1967).ADSCrossRefGoogle Scholar
  36. 36.
    D. C. Wilcox, Turbulence Modeling for CFD, DCW Industries (1998).Google Scholar
  37. 37.
    J. Kriegseis, K. Barckmann, J. Frey, C. Tropea, and C. Grundmann, “Simultaneous Investigation of Pressure Effects and Airflow Influence on DBD Plasma Actuators,” AIAA Paper No. 0756 (2013).CrossRefGoogle Scholar
  38. 38.
    M. A. Goldshtik and V. N. Stern, Hydrodynamic Stability and Turbulence [in Russian] (Nauka, Novosibirsk, 1977).Google Scholar
  39. 39.
    A. R. Hoskinson, N. Hershkowitz, and D. E. Ashpis, “Force Measurements of Single and Double Barrier DBD Plasma Actuators in Quiescent Air,” J. Phys.D: Appl. Phys. 41, 245209 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. P. Kuryachii
    • 1
  • S. V. Manuilovich
    • 1
  • D. A. Rus’yanov
    • 1
  • S. L. Chernyshev
    • 1
  1. 1.Central Aerohydrodynamic Institute (TsAGI)Zhukovsky, Moscow oblastRussia

Personalised recommendations