Fluid Dynamics

, Volume 53, Issue 1, pp 34–48 | Cite as

Instability of a Charged Droplet in an Inhomogeneous Electrostatic Field of a Rod of Finite Thickness

  • A. I. Grigor’evEmail author
  • A. A. Shiryaev
  • S. O. Shiryaeva


The instability of a charged droplet of an ideal liquid in an inhomogeneous electrostatic field of a rod of finite thickness maintained at a constant electrostatic potential is investigated within the framework of analytic asymptotic calculations. It is shown that the mode amplitudes and the drop oscillation frequencies increase with the rod thickness. The critical conditions of instability of the droplet reduce by several times as compared with the critical conditions of implementation of its instability in the electrostatic field of an infinitely thin filament maintained at a constant electrostatic potential. An analytic dependence between the charge and field parameters, critical for implementation of the instability of a charged droplet in an inhomogeneous electrostatic field and dependent on the rod thickness, is found.

Key words

charged droplet electrostatic field of a rod surface instability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. T. Matveev, Course of General Meteorology. Physics of the Atmosphere (Gidrometeoizdat, Leningrad, 1984) [in Russian].Google Scholar
  2. 2.
    Lord Rayleigh (J. W. Strutt), “On the Equilibrium of Liquid Conducting Masses Charged with Electricity,” Phil. Mag. 14, 184–186 (1882).CrossRefGoogle Scholar
  3. 3.
    C. D. Hendrics and J. M. Schneider, “Stability of Conducting Droplet under the Influence of Surface Tension and Electrostatic Forces,” J. Amer. Phys. 1 (6), 450–453 (1963).ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    A. Doyle, D. R. Moffet, and B. Vonnegut, “Behavior of Evaporating Electrically Charged Droplets,” J. Coll. Sci. 19, 136–143 (1964).CrossRefGoogle Scholar
  5. 5.
    T. G. O. Berg, R. J. Trainor, and U. Vaughan, “Stable, Unstable and Metastable Charged Droplets,” J. Atmosph. Sci. 27 (11), 1173–1181 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    J. D. Schweizer and D. N. Hanson, “Stability Limit of Charged Drops,” J. Coll. Int. Sci. 35 (3), 417–423 (1971).ADSCrossRefGoogle Scholar
  7. 7.
    M. Roulleau and M. Desbois, “Study of Evaporation and Instability of ChargedWater Droplets,” J. Atmosph. Sci. 29 (4), 565–569 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    D. Duft, H. Lebbeus, and B. A. Huber, “Shape Oscillations and Stability of Charged Microdroplets,” Phys. Rev. Lett. 89 (8), 1–4 (2002).CrossRefGoogle Scholar
  9. 9.
    D. Duft, T. Achtzehn, R. Muller, et al., “Rayleigh Jets from Levitated Microdroplets,” Nature 421 (6919), 128 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    Chee Sheng Fong, N. D. Black, P. A. Kiefer, and R. A. Shaw, “An Experiment on the Rayleigh Instability of Charged Liquid Drops,” Am. J. Phys. 75 (6), 499–503 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    M. A. Abbas and J. Latham, “The Disintegration and Electrification of Charged Water Drops Falling in an Electric Field,” Quart. J. R.Met. Soc. 95, 63–76 (1969).ADSCrossRefGoogle Scholar
  12. 12.
    J. Latham and V. Myers, “Loss of Charge and Mass from Rain Drop Falling in Intense Electric Field,” J. Geophys. Res. 75 (3), 515–520 (1970).ADSCrossRefGoogle Scholar
  13. 13.
    N. E. Levine, “Disruption of Charged Water Drops in an External Electric Field,” J. Geophys. Res. 76 (21), 5097–5100 (1971).ADSCrossRefGoogle Scholar
  14. 14.
    R. L. Grimm and J. L. Beauchamp, “Dynamics of Field-Induced Droplet Ionization: Time-Resolved Studies of Distortion, Jetting, and Progeny Formation from Charged and Neutral Methanol Droplet Exposed to Strong Electric Fields,” J. Phys. Chem. B. 109, 8244–8250 (2005).CrossRefGoogle Scholar
  15. 15.
    O. V. Kim and P. F. Dunn, “Control Production by in-Flight Electrospraying,” Langmuir 26, 15807–15813 (2010).CrossRefGoogle Scholar
  16. 16.
    A. I. Grigor’ev, A. A. Shiryaev, and S. O. Shiryaeva, “Instability of a Charged Droplet in an Inhomogeneous Electrostatic Field of a Thin Rod,” Fluid Dynamics 51 (2), 180–188 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    V. V. Batygin and I. N. Toptygin, Book of Electrodynamic Problems (Nauka, Moscow, 1970) [in Russian].Google Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1960; Nauka, Moscow, 1982).zbMATHGoogle Scholar
  19. 19.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975) [in Russian].Google Scholar
  20. 20.
    S. O. Shiryaeva, A. I. Grigor’ev, and A. A. Shiryaev, “On Instability of the nth Mode of Oscillations of a Charged Drop in a Homogeneous Electrostatic Field,” Zh. Tekhn. Fiz. 85 (1), 31–38 (2015).Google Scholar
  21. 21.
    S. O. Shiryaeva, “Characteristic Time of the Development of Instability of a Heavily Charged Low-Viscosity Droplet,” Pis’ma v Zh. Tekhn. Fiz. 26 (4), 5–8 (2000).Google Scholar
  22. 22.
    M. Cloupeau and B. Prunet-Foch, “Electrohydrodynamic Spraying of Liquids: Main Functioning Modes,” J. Electrostatics 25, 165–184 (1990).CrossRefGoogle Scholar
  23. 23.
    M. Cloupeau and B. Prunet-Foch, “Electrohydrodynamic Spraying FunctioningModes: A Critical Review,” J. Aerosol Sci. 25 (6), 1021–1035 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    A. Jaworek and A. Krupa, “Classification of the Modes of EHD Spraying,” J. Aerosol Sci. 30 (7), 873–893 (1999).ADSCrossRefGoogle Scholar
  25. 25.
    S. O. Shiryaeva, N. A. Petrushov, and A. I. Grigor’ev, “On the Interaction between Oscillation Modes of a Nonspherical Charged Drop Linear in the Dimensionless Amplitude in an External Electrostatic Field,” Zh. Tekhn. Fiz. 86 (1), 37–44 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Grigor’ev
    • 1
    Email author
  • A. A. Shiryaev
    • 1
  • S. O. Shiryaeva
    • 1
  1. 1.Physical DepartmentDemidov Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations