Fluid Dynamics

, Volume 53, Issue 1, pp 9–20 | Cite as

Asymptotic Analysis of Viscous Fluctuations in Turbulent Boundary Layers

Article
  • 2 Downloads

Abstract

A two-dimensional boundary layer of an incompressible viscous fluid is investigated in the presence of velocity and pressure fluctuations. The characteristic Reynolds number is high and, as a consequence, the unsteady (turbulent) boundary layer is thin. An asymptotic approach is used to analyze the complete unsteady Navier–Stokes equations, which makes it possible to separate out the characteristic viscous and inviscid flow zones in the boundary layer and to solve the corresponding problems. The analytical expressions for the viscous fluctuations governed by the Hamel equation with a large value of the parameter are derived.

Key words

boundary layer viscosity unsteadiness turbulence asymptotic analysis fluctuations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Reynolds, “An Experimental Investigation of the Circumstances which Determine whether the Motion of Water Shall be Direct or Sinuos, and of the Law of Resistance in Parallel Channels,” Phil. Trans. Roy. Soc. 174, 935 (1883).CrossRefMATHGoogle Scholar
  2. 2.
    O. Reynolds, “On the Dynamic Theory of Incompressible Viscous Fluids and the Determination of the Criterion,” Phil. Trans. Roy. Soc. London A 186, 123 (1895).ADSCrossRefMATHGoogle Scholar
  3. 3.
    L. Prandtl, “Über die ausgebildete Turbulenz,” Z. Angew.Math. Mech. 5, 136 (1925).MATHGoogle Scholar
  4. 4.
    T. von Kármán, “Mechanische Ahnlichkeit und Turbulenz,” Nachr. Ges.Wiss. Göttigen, Math. Phys. 1, 58 (1930).MATHGoogle Scholar
  5. 5.
    J. M. Burgers, in: Proceedings of the First International Congress for Applied Mechanics, DelftUniv. Press (1924), p.55.Google Scholar
  6. 6.
    B. G. van der Hegge Zijnen, “Measurements of the VelocityDistribution in the Boundary Layer along a Plane Surface,” Abstract. Delft (1924).Google Scholar
  7. 7.
    M. Hansen, “DieGeschwindigkeitsverteilung in der Grenzschicht an einer eigentauchten Platte,” Z. Angew. Math. Mech. 8 (2), 185 (1928).CrossRefGoogle Scholar
  8. 8.
    Lord Rayleigh, “On the Stability, or Instability, of Certain Fluid Motions,” Sci. Papers 1, 474 (1880).Google Scholar
  9. 9.
    W. Orr, “The Stability or Instability of the Steady Motions of a Liquid,” Proc. Roy. Irish Acad. Ser. A 27, 9 (1906).Google Scholar
  10. 10.
    A. Sommerfeld, ‘Ein Beitrag zur hydrodynamischen Erklarung der turbulenten Flussigkeitsbewegungen,” in: Atti del 4 Congr. Intern. dei Mat. 1908 (1908), Vol. 3, p.116.Google Scholar
  11. 11.
    W. Tollmien, “Über die Enstheung der Turbulenz. 1. Mitteilung,” Nachr. Ges. Wiss. Göttingen Math. Phys. (1929), p.21.Google Scholar
  12. 12.
    H. Schlichting, “Zur Enstheung der Turbulenz bei der Plattenströmung,” Nachr. Ges. Wiss. Göttingen Math. Phys. (1933), p.182.Google Scholar
  13. 13.
    A. N. Kolmogorov, “Local Structure of Turbulence in an Incompressible Fluid at Very High Reynolds Numbers,” Dokl. Akad. Nauk SSSR 30 (4), 299 (1941).ADSGoogle Scholar
  14. 14.
    A. M. Obukhov, “Energy Distribution in the Turbulent Flow Spectrum,” Izv. Akad. Nauk SSSR. Ser.Geogr. Geofiz. 5 (4–5), 453 (1941).Google Scholar
  15. 15.
    L. D. Landau and E. M. Lifshitz, Continuum Mechanics [in Russian] (Gostekhizdat, Moscow, 1953).MATHGoogle Scholar
  16. 16.
    L. Prandtl, “Neue Ergebnisse der Turbulenzforshung,” VDI Zeitschrift 77 (5), (1933).Google Scholar
  17. 17.
    A. A. Izakson, “On the Formula for the Velocity Distribution near a Wall,” Zh. Eksp. Teor. Fiz. 7 (7), 919 (1937).Google Scholar
  18. 18.
    C. B. Millikan, “A Critical Discussion of Turbulent Flows in Channels and Circular Tubes,” in: Proc. 5th Intern. Congr. Appl. Mech. Cambridge, Mass. 1938 (1938), p.386.Google Scholar
  19. 19.
    K. S. Yajnik, “Asymptotic Theory of Turbulent Shear Flows,” J. Fluid Mech. 42 (2), 411 (1970).ADSCrossRefMATHGoogle Scholar
  20. 20.
    G. L. Mellor, “The Large Reynolds Number, Asymptotic Theory of Turbulent Boundary Layers,” Int. J. Engng. Sci. 10 (10), 851 (1972).MathSciNetCrossRefGoogle Scholar
  21. 21.
    F. E. Fendel, “Singular Perturbation and Turbulent Shear Flow near Walls,” J. Astronaut. Sci. 20 (3), 129 (1972).ADSGoogle Scholar
  22. 22.
    N. Afzal, “A Sub-boundary Layer within a Two-Dimensional Turbulent Boundary Layer: An Intermediate Layer,” J. Mech. Theor. Appl. 1 (6), 963 (1982).MathSciNetMATHGoogle Scholar
  23. 23.
    V. I. Ponomarev, “Asymptotic Analysis of an Incompressible Turbulent Boundary Layer,” Uch. Zap. TsAGI 6 (3), 42 (1975).ADSGoogle Scholar
  24. 24.
    V. V. Sychev and Vik. V. Sychev, “On the Structure of a Turbulent Boundary Layer,” Prikl.Mat. Mekh. 51 (4), 593 (1987).MathSciNetMATHGoogle Scholar
  25. 25.
    V. V. Sychev and Vik. V. Sychev, “On Turbulent Separation,” Zh. Vychisl.Mat.Mat. Fiz. 20 (6), 1500 (1980).MathSciNetMATHGoogle Scholar
  26. 26.
    B. Scheichl and A. Kluwick, “TurbulentMarginal Separation and the Turbulent GoldsteinProblem,” AIAA J. 45 (1), 20 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    F. T. Smith, B. Scheichl, and A. Kluwick, “On Turbulent Separation,” J. Eng. Math. 68 (3), 373 (2010).MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    I. V. Egorov, V. G. Sudakov, and A. V. Fedorov, “Numerical Modeling of Perturbation Propagation in a Supersonic Boundary Layer,” Fluid Dynamics 39 (6), 874 (2004).ADSCrossRefMATHGoogle Scholar
  29. 29.
    V. B. Zametaev and A. R. Gorbushin, “Evolution of Vortices in 2D Boundary Layer and in the Couette Flow,” AIP Conf. Proc. 1770, 030044 (2016).CrossRefGoogle Scholar
  30. 30.
    H. Reichardt, “Messungen turbulenter Schwankungen,” Naturwissenschaften 404 (1938).Google Scholar
  31. 31.
    H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1968).MATHGoogle Scholar
  32. 32.
    G. B. Schubauer and P. S. Klebanoff, “Contribution on theMechanics of Boundary Layer Transition,” NACA TN 3489 (1955).Google Scholar
  33. 33.
    V. V. Sychev, “Laminar Separation,” Fluid Dynamics 7 (3), 407 (1972).ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    V. V. Sychev, A. I. Ruban, Vik. V. Sychev, and G. L. Korolev, Asymptotic Theory of Separated Flows (Cambridge Univ. Press, Cambridge, 1998).CrossRefMATHGoogle Scholar
  35. 35.
    V. Ya. Neiland, V. V. Bogolepov, G. N. Dudin, and I. I. Lipatov, Asymptotic Theory of Supersonic Viscous Gas Flows (Elsevier, Amstredam, 2007).Google Scholar
  36. 36.
    K. Stewartson and P. G. Williams, “Self-Induced Separation,” Proc. Roy. Soc. London A 312, 181 (1969).ADSCrossRefMATHGoogle Scholar
  37. 37.
    A. F. Messiter, “Boundary Layer Flow near the Trailing Edge of a Flat Plate,” SIAM J. Appl. Math. 18 (1), 241 (1970).CrossRefMATHGoogle Scholar
  38. 38.
    A. I. Ruban, “Singular Solution of Boundary Layer Equations, Which Can Be Extended Continuously through the Point of Zero Surface Friction,” Fluid Dynamics 16 (6), 835 (1981).ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    A. H. Nayfeh, Perturbation Methods (Wiley, New York, 1973).MATHGoogle Scholar
  40. 40.
    P. S. Klebanoff, “Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient,” NACA Rep. No. 1247 (1955), p. 1135.Google Scholar
  41. 41.
    E. U. Repik and Yu. P. Sosedko, Turbulent Boundary Layers [in Russian] (Fizmatlit, Moscow, 2007).MATHGoogle Scholar
  42. 42.
    V. I. Smirnov, Handbook of the Higher Mathematics [in Russian] (Fizmatgiz, Moscow, 1958).Google Scholar
  43. 43.
    G. Hamel, “Spiralformige Bewegung zäher Flussigkeiten,” Jahresber.D. Dt.Mathematiker-Vereinigung 25, 32 (1916).MATHGoogle Scholar
  44. 44.
    A. M. Gol’dshtik, V. N. Shtern, and N. I. Yavorskii, Viscous Flows with Paradoxical Properties [inRussian] (Novosibirsk, Nauka, 1989).Google Scholar
  45. 45.
    L. D. Akulenko, D. V. Georgievskii, and S. A. Kumakshev, “Solutions of the Jeffrey–Hamel Problem Regularly Extended in the Reynolds Number,” Fluid Dynamics 39 (1), 12 (2004).ADSMathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    L. D. Akulenko and S. A. Kumakshev, “Bifurcation of a Main Steady-State Viscous Flow in a Plane Divergent Channel,” Fluid Dynamics 40 (3), 359 (2005).ADSMathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    L. D. Akulenko and S. A. Kumakshev, “Bifurcation of a Multi-Mode Viscous Flows in a Plane Divergent Channel,” Prikl. Mat. Mekh. 72 (3), 431 (2008).MathSciNetMATHGoogle Scholar
  48. 48.
    F. T. Smith, “Finite-Time Break-up Can Occur in any Unsteady Interacting Boundary Layer,” Mathematika 35, 256 (1988).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia

Personalised recommendations