Advertisement

Entomological Review

, Volume 98, Issue 9, pp 1351–1368 | Cite as

Using DNA Markers in Studies of Chigger Mites (Acariformes, Trombiculidae)

  • A. A. AntonovskaiaEmail author
Article
  • 15 Downloads

Abstract

This study reviews the available molecular studies on chigger mites (Acari, Trombiculidae). The vast majority of publications focus on sample identifications. Nucleotide sequences of chigger mites deposited in databases have been obtained through research on biodiversity, population structure, mitochondrial gene arrangement, and mite phylogeny. The COI sequences of mites deposited in GenBank and BOLDSystems were analyzed to estimate the usefulness of barcoding in chigger mite systematics. Our results show the division of the sequences into two groups: one (Leptotrombidium species) lacks two amino acids while the other has them. The variable site matches one of the loops of the COI protein. The current level of knowledge of the nucleotide sequences in chigger mites may lead to misidentifications of samples if only molecular tools are used. Further studies on other species and other genes, especially nuclear ones, are needed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., “Basic Local Alignment Search Tool,” Journal of Molecular Biology 215 (3), 403–410 (1990).CrossRefPubMedGoogle Scholar
  2. 2.
    Ammazzalorso, A.D., Zolnik, C.P., Daniels, T.J., and Kolokotronis, S.-O., “To Beat or not to Beat a Tick: Comparison of DNA Extraction Methods for Ticks (Ixodes scapularis),” Peer J 3: e1147 (2015). https://doi.org/peerj.com/articles/1147/.Google Scholar
  3. 3.
    Arabi, J., Judson, M.L., Deharveng, L., Lourenço, W.R., Cruaud, C., and Hassanin, A., “Nucleotide Composition of COI Sequences in Chelicerata (Arthropoda): Detecting New Mitogenomic Rearrangements,” Journal of Molecular Evolution 74 (1–2), 81–95 (2012).CrossRefPubMedGoogle Scholar
  4. 4.
    Balashov, Yu.S., Parasitism of Acarines and Insects on Terrestrial Vertebrates (Nauka, St. Petersburg, 2009) [in Russian].Google Scholar
  5. 5.
    Benson, D.A., “GenBank,” Nucleic Acids Research 33 (Database Issue), D34–D38 (2004).Google Scholar
  6. 6.
    Brennan, J.M. and Goff, M.L., “Keys to the Genera of Chiggers of the Western Hemisphere (Acarina: Trombiculidae),” Journal of Parasitology 63 (3), 554–566 (1977).CrossRefPubMedGoogle Scholar
  7. 7.
    Burger, T.D., Shao, R., Labruna, M.B., and Barker, S.C., “Molecular Phylogeny of Soft Ticks (Ixodida: Argasidae) Inferred from Mitochondrial Genome and Nuclear rRNA Sequences,” Ticks and Tick-Borne Diseases 5 (2), 195–207 (2014).CrossRefPubMedGoogle Scholar
  8. 8.
    Castresana, J., “Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis,” Molecular Biology and Evolution 17 (4), 540–552 (2000).CrossRefPubMedGoogle Scholar
  9. 9.
    Collins, R.A. and Cruickshank, R.H., “The Seven Deadly Sins of DNA Barcoding,” Molecular Ecology Resources 13 (6), 969–975 (2013).PubMedGoogle Scholar
  10. 10.
    Cruickshank, R.H., “Molecular Markers for the Phylogenetics of Mites and Ticks,” Systematic and Applied Acarology 7, 3–14 (2002).CrossRefGoogle Scholar
  11. 11.
    Dabert, M., “DNA Markers in the Phylogenetics of the Acari,” Biological Letters 43 (2), 97–107 (2006).Google Scholar
  12. 12.
    Dabert, M., Bigos, A., and Witalinski, W., “DNA Barcoding Reveals Andropolymorphism in Aclerogmasus Species (Acari: Parasitidae),” Zootaxa 3015, 13–20 (2011).CrossRefGoogle Scholar
  13. 13.
    Dabert, J., Ehrnsberger, R., and Dabert, M., “Glaucalges tytonis sp. n. (Analgoidea, Xolalgidae) from the Barn Owl Tyto alba (Strigiformes, Tytonidae): Compiling Morphology with DNA Barcode Data for Taxon Descriptions in Mites (Acari),” Zootaxa 52 (1719), 41–52 (2008).Google Scholar
  14. 14.
    Dabert, M., Witalinski, W., Kazmierski, A., Olszanowski, Z., and Dabert, J., “Molecular Phylogeny of Acariform Mites (Acari, Arachnida): Strong Conflict between Phylogenetic Signal and Long-Branch Attraction Artifacts,” Molecular Phylogenetics and Evolution 56 (1), 222–241 (2010).CrossRefPubMedGoogle Scholar
  15. 15.
    Daniel, M. and Stekolnikov, A.A., “New Data on Chigger Mites of the Subfamily Leeuwenhoekiinae (Acari: Trombiculidae) Parasitizing Bats in Cuba,” Acarina 10 (2), 149–154 (2002).Google Scholar
  16. 16.
    Dohany, A.L., Shirai, A., Robinson, D.M., Ram, S., and Huxsoll, D.L., “Identification and Antigenic Typing of Rickettsia tsutsugamushi in Naturally Infected Chiggers (Acarina: Trombiculidae) by Direct Immunofluorescence,” Molecular Phylogenetics and Evolution 27 (6), 1261–1264 (1978).Google Scholar
  17. 17.
    Don, R.H., Cox, P.T., Wainwright, B.J., Baker, K., and Mattick, J.S., “‘Touchdown’ PCR to Circumvent Spurious Priming during Gene Amplification,” Nucleic Acids Research 19 (14): 4008 (1991).Google Scholar
  18. 18.
    Doña, J., Diaz-Real, J., Mironov, S., Bazaga, P., Serrano, D., and Jovani, R., “DNA Barcoding and Minibarcoding as a Powerful Tool for Feather Mite Studies,” Molecular Ecology Resources 15 (5), 1216–1225 (2015).CrossRefPubMedGoogle Scholar
  19. 19.
    Ehounoud, C.B., Fenollar, F., Dahmani, M., N’Guessan, J.D., Raoult, D., and Mediannikov, O., “Bacterial Arthropod-Borne Diseases in West Africa,” Acta Tropica 171 (3), 124–137 (2017).CrossRefPubMedGoogle Scholar
  20. 20.
    Fernandez-Soto, P., Perez-Sanchez, R., and Encinas-Grandes, A., “Molecular Detection of Ehrlichia phagocytophila Genogroup Organisms in Larvae of Neotrombicula autumnalis (Acari: Trombiculidae) Captured in Spain,” Journal of Parasitology 87 (6), 1482–1483 (2001).CrossRefPubMedGoogle Scholar
  21. 21.
    Foley, J., Foley, J., Branston, T., Woods, L., and Clifford, D., “Severe Ulceronecrotic Dermatitis Associated with Mite Infestation in the Critically Endangered Amargosa Vole (Microtus californicus scirpensis),” Journal of Parasitology 99 (4), 595–598 (2013).CrossRefPubMedGoogle Scholar
  22. 22.
    Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R., “DNA Primers for Amplification of Mitochondrial Cytochrome c Oxidase Subunit I from Diverse Metazoan Invertebrates,” Molecular Marine Biology and Biotechnology 3 (5), 294–299 (1994).PubMedGoogle Scholar
  23. 23.
    Geller, J., Meyer, C., Parker, M., and Hawk, H., “Redesign of PCR Primers for Mitochondrial Cytochrome c Oxidase Subunit I for Marine Invertebrates and Application in All-Taxa Biotic Surveys,” Molecular Ecology Resources 13 (5), 851–861 (2013).CrossRefPubMedGoogle Scholar
  24. 24.
    Giribet, G., Carranza, S., Baguna, J., Riutort, M., and Ribera, C., “First Molecular Evidence for the Existence of a Tardigrada + Arthropoda Clade,” Molecular Biology and Evolution 13 (1), 76–84 (1996).CrossRefPubMedGoogle Scholar
  25. 25.
    Goff, M.L., Loomis, R.B., Welbourn, W.C., and Wrenn, W.J., “A Glossary of Chigger Terminology (Acari: Trombiculidae),” Journal of Medical Entomology 19 (3), 221–238 (1982).CrossRefPubMedGoogle Scholar
  26. 26.
    Gomez-Puerta, L.A., Olazabal, J., Lopez-Urbina, M.T., and Gonzalez, A.E., “Trombiculiasis Caused by Chigger Mites Eutrombicula (Acari: Trombiculidae) in Peruvian Alpacas,” Veterinary Parasitology 190 (1–2), 294–296 (2012).CrossRefPubMedGoogle Scholar
  27. 27.
    Grechko, V.V., “Problems of Molecular Phylogenetics by the Example of Squamate Reptiles: Mitochondrial DNA Markers,” Molekulyarnaya Biologiya 47 (1), 61–82 (2013).Google Scholar
  28. 28.
    Grover, A. and Sharma, P.C., “Development and Use of Molecular Markers: Past and Present,” Critical Reviews in Biotechnology 36 (2), 290–302 (2016).CrossRefPubMedGoogle Scholar
  29. 29.
    Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W., and Hebert, P.D., “DNA Barcodes Distinguish Species of Tropical Lepidoptera,” Proceedings of the National Academy of Sciences 103 (4), 968–971 (2006).CrossRefGoogle Scholar
  30. 30.
    Hebert, P.D., Cywinska, A., and Ball, S.L., “Biological Identifications through DNA Barcodes,” Proceedings of the Royal Society of London. Series B, Biological Sciences 270 (1512), 313–321 (2003).CrossRefGoogle Scholar
  31. 31.
    Hebert, P.D., Penton, E.H., Burns, J.M., Janzen, D.H., and Hallwachs, W., “Ten Species in One: DNA Barcoding Reveals Cryptic Species in the Neotropical Skipper Butterfly Astraptes fulgerator,” Proceedings of the National Academy of Sciences 101 (41), 14812–14817 (2004).CrossRefGoogle Scholar
  32. 32.
    Hebert, P.D., de Ward, J.R., Zakharov, E.V., Prosser, S.W., Sones, J.E., et al., “A DNA ‘Barcode Blitz’: Rapid Digitization and Sequencing of a Natural History Collection,” PLOS One 8 (7): e68535 (2013). https://doi.org/10.1371/journal.pone.0068535.Google Scholar
  33. 33.
    Hillis, D.M. and Bull, J.J., “An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis,” Systematic Biology 42 (2), 182–192 (1993).CrossRefGoogle Scholar
  34. 34.
    Huang, Y., Zhao, L., Zhang, Z., Liu, M., Xue, Z., et al., “Detection of a Novel Rickettsia from Leptotrombidium scutellare Mites (Acari: Trombiculidae) from Shandong of China,” Journal of Medical Entomology 54 (3), 544–549 (2017).CrossRefPubMedGoogle Scholar
  35. 35.
    Ivanova, N.V., Dewaard, J.R., and Hebert, P.D., “An Inexpensive, Automation-Friendly Protocol for Recovering High-Quality DNA,” Molecular Ecology Notes 6 (4), 998–1002 (2006).CrossRefGoogle Scholar
  36. 36.
    Jukes, T.H. and Cantor, C.R., “Evolution of Protein Molecules,” in Mammalian Protein Metabolism, Ed. by Munro, H.N. (Academic Press, New York, 1969), pp. 21–132.Google Scholar
  37. 37.
    Kampen, H., Schöler, A., Metzen, M., Oehme, R., Hartelt, K., et al., “Neotrombicula autumnalis (Acari, Trombiculidae) as a Vector for Borrelia burgdorferi s. l.,” Experimental and Applied Acarology 33 (1–2), 93–102 (2004).CrossRefPubMedGoogle Scholar
  38. 38.
    Kim, J.H., Roh, J.Y., Kwon, D.H., Kim, Y.H., Yoon, K.A., et al., “Estimation of the Genome Sizes of the Chigger Mites Leptotrombidium pallidum and Leptotrombidium scutellare Based on Quantitative PCR and k-mer Analysis,” Parasites and Vectors 7 (279), 1–8 (2014).Google Scholar
  39. 39.
    Kimura, M., “A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences,” Journal of Molecular Evolution 16 (2), 111–120 (1980).CrossRefPubMedGoogle Scholar
  40. 40.
    Korkusol, A., Takhampunya, R., Monkanna, T., Khlaimanee, N., Evans, E., and Richardson, J., “Development of a Molecular Taxonomic Key for the Identification of Scrub Typhus Vectors, Mites within the Genus Leptotrombidium,” in The 59th Annual Meeting of American Society of Tropical Medicine and Hygiene (2010), p. 61.Google Scholar
  41. 41.
    Krakowetz, C.N., Sproat, A., Lindsay, L.R., and Chilton, N.B., “Sequence Variability in the Mitochondrial 12S rRNA and tRNAVal Genes of Ixodes scapularis (Acari: Ixodidae) Individuals Shown Previously to be Genetically Invariant,” Molecular and Cellular Probes 29 (3), 177–181 (2015).CrossRefPubMedGoogle Scholar
  42. 42.
    Kreipe, V., Corral-Hernández, E., Scheu, S., Schaefer, I., and Maraun, M., “Phylogeny and Species Delineation in European Species of the Genus Steganacarus (Acari, Oribatida) Using Mitochondrial and Nuclear Markers,” Experimental and Applied Acarology 66 (2), 173–186 (2015).CrossRefPubMedGoogle Scholar
  43. 43.
    Kress, W.J., García-Robledo, C., Uriarte, M., and Erickson, D.L., “DNA Barcodes for Ecology, Evolution, and Conservation,” Trends in Ecology and Evolution 30 (1), 25–35 (2015).CrossRefPubMedGoogle Scholar
  44. 44.
    Kudryashova, N.I., Chigger Mites (Acariformes, Trombiculidae) of the East Palaearctic (KMK Scientific Press, Moscow, 1998) [in Russian].Google Scholar
  45. 45.
    Kumar, S., Stecher, G., and Tamura, K., “MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets,” Molecular Biology and Evolution 33 (7), 1870–1874 (2016).CrossRefPubMedGoogle Scholar
  46. 46.
    Latrofa, M.S., Dantas-Torres, F., Annoscia, G., Cantacessi, C., and Otranto, D., “Comparative Analyses of Mitochondrial and Nuclear Genetic Markers for the Molecular Identification of Rhipicephalus spp.,” Infection, Genetics and Evolution 20, 422–427 (2013).CrossRefPubMedGoogle Scholar
  47. 47.
    Lehmitz, R. and Decker, P., “The Nuclear 28S Gene Fragment D3 as Species Marker in Oribatid Mites (Acari, Oribatida) from German Peatlands,” Experimental and Applied Acarology 71 (3), 259–276 (2017).CrossRefPubMedGoogle Scholar
  48. 48.
    Lindquist, E.E., Krantz, G.W., and Walter, D.E., “Classification,” in A Manual of Acarology, Ed. by Krantz, G.W. and Walter, D.E. (Texas Tech University Press, 2009), pp. 97–103.Google Scholar
  49. 49.
    Lis, J.A., Lis, B., and Ziaja, D.J., “In BOLD We Trust? A Commentary on the Reliability of Specimen Identification for DNA Barcoding: A Case Study on Burrower Bugs (Hemiptera: Heteroptera: Cydnidae),” Zootaxa 4114 (1), 83–86 (2016).CrossRefPubMedGoogle Scholar
  50. 50.
    Literak, I., Stekolnikov, A.A., Sychra, O., Dubska, L., and Taragelova, V., “Larvae of Chigger Mites Neotrombicula spp. (Acari: Trombiculidae) Exhibited Borrelia but no Anaplasma Infections: A Field Study Including Birds from the Czech Carpathians as Hosts of Chiggers,” Experimental and Applied Acarology 44 (4), 307–314 (2008).CrossRefPubMedGoogle Scholar
  51. 51.
    Lv, J., Wu, S., Zhang, Y., Chen, Y., Feng, C., et al., “Assessment of Four DNA Fragments (COI, 16S rDNA, ITS2, 12S rDNA) for Species Identification of the Ixodida (Acari: Ixodida),” Parasites and Vectors 7 (1), 93 (2014).CrossRefPubMedGoogle Scholar
  52. 52.
    Matsuda, T., Morishita, M., Hinomoto, N., and Gotoh, T., “Phylogenetic Analysis of the Spider Mite Subfamily Tetranychinae (Acari: Tetranychidae) Based on the Mitochondrial COI Gene and the 18S and the 5′ End of the 28S rRNA Genes Indicates that Several Genera are Polyphyletic,” PLOS One 9 (10): e108672 (2014). https://doi.org/10.1371/journal.pone.0108672.Google Scholar
  53. 53.
    Moniuszko, H., Zaleśny, G., and Mąkol, J., “Host-Associated Differences in Morphometric Traits of Parasitic Larvae Hirsutiella zachvatkini (Actinotrichida: Trombiculidae),” Experimental and Applied Acarology 67 (1), 123–133 (2015).CrossRefPubMedGoogle Scholar
  54. 54.
    Moniuszko, H., Shatrov, A.B., and Mąkol, J., “Description of Active Post-Larval Forms of Neotrombicula vulgaris (Schluger, 1955) (Prostigmata: Trombiculidae), with Notes on Biology and Ecology of the Species,” Annales Zoologici 67 (2), 243–251 (2017).CrossRefGoogle Scholar
  55. 55.
    Navajas, M. and Fenton, B., “The Application of Molecular Markers in the Study of Diversity in Acarology: a Review,” Experimental and Applied Acarology 24 (10–11), 751–74 (2000).CrossRefPubMedGoogle Scholar
  56. 56.
    Navajas, M., Gutierrez, J., Bonato, O., Bolland, H.R., and Mapangou-Divassa, S., “Intraspecific Diversity of the Cassava Green Mite Mononychellus progresivus (Acari: Tetranychidae) Using Comparisons of Mitochondrial and Nuclear Ribosomal DNA Sequences and Cross-Breeding,” Experimental and Applied Acarology 18 (6), 351–360 (1994).CrossRefPubMedGoogle Scholar
  57. 57.
    Nylander, J.A.A., MrModeltest v2 (Evolutionary Biology Centre, Uppsala University, 2004). https://doi.org/github.com/nylander/MrModeltest2 (updated 3.11.2016).Google Scholar
  58. 58.
    Okassa, M., Kreiter, S., and Tixier, M.-S.S., “Obtaining Molecular Data for All Life Stages of Typhlodromus (Typhlodromus) exhilaratus (Mesostigmata: Phytoseiidae): Consequences for Species Identification,” Experimental and Applied Acarology 57 (2), 105–116 (2012).CrossRefPubMedGoogle Scholar
  59. 59.
    Otto, J.C. and Wilson, K., “Assessment of the Usefulness of Ribosomal 18S and Mitochondrial COI Sequences in Prostigmata Phylogeny,” in Acarology: Proceedings of the 10th International Congress (Csiro Publishing, 2001), pp. 100–109.Google Scholar
  60. 60.
    Park, S.W., Ha, N.Y., Ryu, B., Bang, J.H., Song, H., et al., “Urbanization of Scrub Typhus Disease in South Korea,” PLOS Neglected Tropical Diseases 9 (5): e0003814 (2015). https://doi.org/10.1371/journal.pntd.0003814.Google Scholar
  61. 61.
    Paternina, L.E., Verbel-Vergara, D., and Bejarano, E.E., “Comparación y utilidad de las regiones mitocondriales de los genes 16S y COX1 para los análisis genéticos en garrapatas (Acari: Ixodidae),” Biomédica 36 (2), 295 (2016).CrossRefPubMedGoogle Scholar
  62. 62.
    Pepato, A.R. and Klimov, P.B., “Origin and Higher-Level Diversification of Acariform Mites–Evidence from Nuclear Ribosomal Genes, Extensive Taxon Sampling, and Secondary Structure Alignment,” BMC Evolutionary Biology 15 (178), 1–20 (2015).Google Scholar
  63. 63.
    Pepato, A.R., da Rocha, C.E., and Dunlop, J.A., “Phylogenetic Position of the Acariform Mites: Sensitivity to Homology Assessment under Total Evidence,” BMC Evolutionary Biology 10, 235 (2010).Google Scholar
  64. 64.
    Pešić, V., Asadi, M., Cimpean, M., Dabert, M., Esen, Y., et al., “Six Species in One: Evidence of Cryptic Speciation in the Hygrobates fluviatilis Complex (Acariformes, Hydrachnidia, Hygrobatidae),” Systematic and Applied Acarology 22 (9), 1327–1337 (2017).CrossRefGoogle Scholar
  65. 65.
    Phillips, A.J.A. and Simon, C., “Simple, Efficient, and Non-Destructive DNA Extraction Protocol for Arthropods,” Annals of the Entomological Society of America 88 (3), 281–283 (1995).CrossRefGoogle Scholar
  66. 66.
    Porco, D., Rougerie, R., Deharveng, L., and Hebert, P., “Coupling Non-Destructive DNA Extraction and Voucher Retrieval for Small Soft-Bodied Arthropods in a High-Throughput Context: the Example of Collembola,” Molecular Ecology Resources 10 (6), 942–945 (2010).CrossRefPubMedGoogle Scholar
  67. 67.
    Ranwez, V., Harispe, S., Delsuc, F., and Douzery, E.J., “MACSE: Multiple Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons,” PLOS One 6 (9): e22594 (2011). https://doi.org/10.1371/journal.pone.0022594.Google Scholar
  68. 68.
    Ratnasingham, S. and Hebert, P.D., “Bold: The Barcode of Life Data System (https://doi.org/www.barcodinglife.org.),” Molecular Ecology Notes 7 (3), 355–364 (2007).PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Ratnasingham, S. and Hebert, P.D., “A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System,” PLOS One 8 (7): e66213 (2013). https://doi.org/10.1371/journal.pone.0066213.Google Scholar
  70. 70.
    Ree, H.-I.I., Lee, I.-Y.Y., and Cho, M.-K.K., “Determination of the Vector Species of Tsutsugamushi Disease in Korea,” Korean Journal of Parasitology 29 (1), 87–92 (1991).CrossRefPubMedGoogle Scholar
  71. 71.
    Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D., Darling, A., et al., “MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space,” Systematic Biology 61 (3), 539–542 (2012).PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Rosenberger, M., Maraun, M., Scheu, S., and Schaefer, I., “Pre-and Post-Glacial Diversifications Shape Genetic Complexity of Soil-Living Microarthropod Species,” Pedobiologia 56 (2), 79–87 (2013).CrossRefGoogle Scholar
  73. 73.
    Santibáñez-Sáenz, P., Trobicúlidos y trombiculiasis en La Rioja (Doctoral Dissertation, Universidad de La Rioja, 2015). https://doi.org/dialnet.unirioja.es/servlet/tesis?codigo=46014.Google Scholar
  74. 74.
    Santibáñez, P., Palomar, A.M., Portillo, A., Santibáñez, S., and Oteo, J.A., “The Role of Chiggers as Human Pathogens,” in An Overview of Tropical Diseases, Ed. by Samie, A. (InTech, 2015), pp. 173–202.Google Scholar
  75. 75.
    Schlick-Steiner, B.C., Steiner, F.M., Seifert, B., Stauffer, C., Christian, E., and Crozier, R.H., “Integrative Taxonomy: a Multisource Approach to Exploring Biodiversity,” The Annual Review of Entomology 55 (1), 421–438 (2010).CrossRefPubMedGoogle Scholar
  76. 76.
    Shao, R., Mitani, H., Barker, S.C., Takahashi, M., and Fukunaga, M., “Novel Mitochondrial Gene Content and Gene Arrangement Indicate Illegitimate Inter-mtDNA Recombination in the Chigger Mite, Leptotrombidium pallidum,” Journal of Molecular Evolution 60 (6), 764–773 (2005).CrossRefPubMedGoogle Scholar
  77. 77.
    Shao, R., Barker, S.C., Mitani, H., Takahashi, M., and Fukunaga, M., “Molecular Mechanisms for the Variation of Mitochondrial Gene Content and Gene Arrangement among Chigger Mites of the Genus Leptotrombidium (Acari: Acariformes),” Journal of Molecular Evolution 63 (2), 251–261 (2006).CrossRefPubMedGoogle Scholar
  78. 78.
    Shatrov, A.B. and Kudryashova, N.I., “Taxonomic Ranking of Major Trombiculid Subtaxa with Remarks on the Evolution of Host-Parasite Relationships (Acariformes: Parasitengona: Trombiculidae),” Annales Zoologici 58 (2), 279–287 (2008).CrossRefGoogle Scholar
  79. 79.
    Skoracka, A. et al., “The Wheat Curl Mite Aceria tosichella (Acari: Eriophyoidea) is a Complex of Cryptic Lineages with Divergent Host Ranges: Evidence from Molecular and Plant Bioassay Data,” Biological Journal of the Linnean Society 109 (1), 165–180 (2013).CrossRefGoogle Scholar
  80. 80.
    Söller, R., Wohltmann, A., Witte, H., and Blohm, D., “Phylogenetic Relationships within Terrestrial Mites (Acari: Prostigmata, Parasitengona) Inferred from Comparative DNA Sequence Analysis of the Mitochondrial Cytochrome Oxidase Subunit I Gene,” Molecular Phylogenetics and Evolution 18 (1), 47–53 (2001).CrossRefPubMedGoogle Scholar
  81. 81.
    Stålstedt, J., Bergsten, J., and Ronquist, F., “‘Forms’ of Water Mites (Acari: Hydrachnidia): Intraspecific Variation or Valid Species?” Ecology and Evolution 3 (10), 3415–3435 (2013).PubMedCentralPubMedGoogle Scholar
  82. 82.
    Stålstedt, J., Wohltmann, A., Bergsten, J., and Mąkol, J., “Towards Resolving the Double Classification in Erythraeus (Actinotrichida: Erythraeidae): Matching Larvae with Adults Using 28S Sequence Data and Experimental Rearing,” Organisms Diversity and Evolution 16 (4), 761–790 (2016).CrossRefGoogle Scholar
  83. 83.
    Stekolnikov, A.A., “Leptotrombidium (Acari: Trombiculidae) of the World,” Zootaxa 3728 (1), 1–173 (2013).CrossRefPubMedGoogle Scholar
  84. 84.
    Tavaré, S., “Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences,” Lectures on Mathematics in the Life Sciences 17 (2), 57–86 (1986).Google Scholar
  85. 85.
    Tixier, M.S., Hernandes, F.A., Guichou, S., and Krei-ter, S., “The Puzzle of DNA Sequences of Phytoseiidae (Acari: Mesostigmata) in the Public GenBank Database,” Invertebrate Systematics 25 (5), 389–406 (2011).CrossRefGoogle Scholar
  86. 86.
    Tixier, M.S., Okassa, M., Kreiter, S., “An Integrative Morphological and Molecular Diagnostics for Typhlodromus pyri (Acari: Phytoseiidae),” Zoologica Scripta 41 (1), 68–78 (2012).CrossRefGoogle Scholar
  87. 87.
    Valdecasas, A.G. and Abad, A., “Morphological Confocal Microscopy in Arthropods and the Enhancement of Autofluorescence after Proteinase K Extraction,” Microscopy and Microanalysis 17, 109–113 (2011).CrossRefPubMedGoogle Scholar
  88. 88.
    Vicente dos Santos, V. and Tixier, M.S., “Which Molecular Markers for Assessing Which Taxonomic Level? The Case Study of the Mite Family Phytoseiidae (Acari: Mesostigmata),” Cladistics 33 (3), 251–267 (2017).CrossRefGoogle Scholar
  89. 89.
    Voronova, N.V., Buga, S.V., and Kurchenko, V.P., “COI-5 Region as a Marker for Molecular Taxonomy of Animals: Approaches, Outcomes and Constraints,” Trudy Belorusskogo Gosudarstvennogo Universiteta 7 (1), 22–42 (2012).Google Scholar
  90. 90.
    Weitzel, T., Dittrich, S., López, J., Phuklia, W., Martinez-Valdebenito, C., et al., “Endemic Scrub Typhus in South America,” New England Journal of Medicine 375 (10), 954–961 (2016).CrossRefPubMedGoogle Scholar
  91. 91.
    Wen, T., “Classification of the Sand-Mite Family Walchiidae (Acariformes: Trombiculoidea),” Chinese Journal of Parasitology and Parasitic Diseases 22 (2), 113–118 (2004).PubMedGoogle Scholar
  92. 92.
    Whiting, M.F., Carpenter, J.C., Wheeler, Q.D., and Wheeler, W.C., “The Strepsiptera Problem: Phylo-geny of the Holometabolous Insect Orders Inferred from 18S and 28S Ribosomal DNA Sequences and Morphology,” Systematic Biology 46 (1), 1–68 (1997).PubMedGoogle Scholar
  93. 93.
    Will, K.W. and Rubinoff, D., “Myth of the Molecule: DNA Barcodes for Species cannot Replace Morphology for Identification and Classification,” Cladistics 20 (1), 47–55 (2004).CrossRefGoogle Scholar
  94. 94.
    Wirta, H., Wirta, H., Várkonyi, G., Rasmussen, C., Kaartinen, R., et al., “Establishing a Community-Wide DNA Barcode Library as a New Tool for Arctic Research,” Molecular Ecology Resources 16 (3), 809–822 (2016).CrossRefPubMedGoogle Scholar
  95. 95.
    Wu, G., Zhang, Y., Guo, H., Jiang, K., Zhang, J., and Gan, Y., “The Role of Leptotrombidium scutellare in the Transmission of Human Diseases,” Chinese Medical Journal 109 (9), 670–673 (1996).PubMedGoogle Scholar
  96. 96.
    Xue, X., Guo, J.F., Dong, Y., Hong, X.Y., and Shao, R., “Mitochondrial Genome Evolution and tRNA Truncation in Acariformes Mites: New Evidence from Eriophyoid Mites,” Scientific Reports 6: 18920 (2016). https://doi.org/10.1038/srep18920.Google Scholar
  97. 97.
    Xue, X.F., Dong, Y., Deng, W., Hong, X.Y., and Shao, R., “The Phylogenetic Position of Eriophyoid Mites (Superfamily Eriophyoidea) in Acariformes Inferred from the Sequences of Mitochondrial Genomes and Nuclear Small Subunit (18S) rRNA Gene,” Molecular Phylogenetics and Evolution 109, 271–282 (2017).CrossRefPubMedGoogle Scholar
  98. 98.
    Yang, X., Ye, Q., Xin, T., Zou, Z., and Xia, B., “Population Genetic Structure of Cheyletus malaccensis (Acari: Cheyletidae) in China Based on Mitochondrial COI and 12S rRNA Genes,” Experimental and Applied Acarology 69 (2), 117–128 (2016).CrossRefPubMedGoogle Scholar
  99. 99.
    Yao, H., Song, J., Liu, C., Luo, K., Han, J., et al., “Use of ITS2 Region as the Universal DNA Barcode for Plants and Animals,” PLoS One 5 (10): e13102 (2010). https://doi.org/10.1371/journal.pone.0013102.Google Scholar
  100. 100.
    Young, M.R. and Hebert, P.D., “Patterns of Protein Evolution in Cytochrome c Oxidase 1 (COI) from the Class Arachnida,” PLOS One 10 (8): e0138167 (2015). https://doi.org/10.1371/journal.pone.0135053.Google Scholar
  101. 101.
    Young, M.R., Behan-Pelletier, V.M., and Hebert, P.D., “Revealing the Hyperdiverse Mite Fauna of Subarctic Canada through DNA Barcoding,” PLOS One 7 (11): e48755 (2012). https://doi.org/10.1371/journal.pone.0048755.Google Scholar
  102. 102.
    Zhang, Z.Q., Fan, Q.H., Pešić, V., Smit, H., Bochkov, A.V., et al., “Order Trombidiformes Reuter, 1909,” in Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness, Ed. by Zhang, Z.Q. (Magnolia Press, 2011), pp. 129–138.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Biological FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations