Doklady Chemistry

, Volume 484, Issue 2, pp 37–40 | Cite as

A New Approach in X-ray Diffraction Study of the Microstructure of Films of Supersaturated Substitutional Solid Solutions CdxPb1 – xS

  • I. V. Vaganova
  • L. N. MaskaevaEmail author
  • V. I. Voronin
  • V. F. Markov
  • V. G. Bamburov


Films of supersaturated substitutional solid solutions (SSS) CdxPb1 – xS (0 < x < 0.25) with a thickness of 0.6–1.0 μm were synthesized by the chemical bath deposition method. Dependences of dislocation densities, crystallite size, and texture coefficients on the Cd content in the films were determined using the modified Williamson–Hall (MWH) analysis of X-ray diffraction patterns.



This study was financially supported by the Government of the Russian Federation in the framework of Program no. 211 (project no. 02.A03.21.0006) and by the Federal Agency of Scientific Organizations of the Russian Federation in the framework of governmental contract (“Potok” subject, no. АААА–А18–118020190112–8 and R&D no. АААА–А16–116122810216–3) and was carried out using the Unique Research Facility “Neutron Materials Science Complex of the Institute of Metal Physics.”


  1. 1.
    Markov, V.F., Maskaeva, L.N., and Ivanov, P.N., Gidrokhimicheskoe osazhdenie plenok sul’fidov metallov: modelirovanie i eksperiment (Hydrochemical Deposition of Metal Sulfide Films: Modeling and Experiment), Yekaterinburg: UrO RAN, 2006.Google Scholar
  2. 2.
    Warren, B.E. and Averbach, B.L., J. Appl. Phys., 1952, vol. 23, pp. 497–512.CrossRefGoogle Scholar
  3. 3.
    Ribárik, G. and Ungár, T., Mater. Sci. Eng. A, 2010, vol. 528, pp. 112–121.CrossRefGoogle Scholar
  4. 4.
    Maskaeva, L.N., Kutyavina, A.A., Markov, V.F., Vaganova, I.V., and Voronin, V.I., Zh. Obshch. Khim., 2018, vol. 88, no. 2, pp. 319–328.Google Scholar
  5. 5.
    Vegard, L., Akad. Mat. Natur. Kbisse, 1947, no. 2, p. 83.Google Scholar
  6. 6.
    Chichagov, A.V. and Sipavina, L.V., Parametry yacheek tverdykh rastvorov (Unit Cell Parameters of Solid Solutions), Moscow: Nauka, 1982.Google Scholar
  7. 7.
    Rietveld, H.M., J. Appl Crystallogr., 1969, vol. 2, pp. 65–71.CrossRefGoogle Scholar
  8. 8.
    Rodriguez-Carvajal, J., Physica B, 1993, vol. 192, pp. 55–59.CrossRefGoogle Scholar
  9. 9.
    Williamson, G.K. and Hall, W.H., Acta Metall., 1953, vol. 1, pp. 22–31.CrossRefGoogle Scholar
  10. 10.
    Ungár, T., Dragomir, I., Revesz, A., and Borbely, A., J. Appl. Crystallogr., 1999, vol. 32, pp. 992–1002.CrossRefGoogle Scholar
  11. 11.
    Ungár, T. and Borbely, A., Appl. Phys. Lett., 1996, vol. 69, no. 21, pp. 3173–3175.CrossRefGoogle Scholar
  12. 12.
    Ribárik, G. and Ungár, T., Mater. Sci. Eng.: A, 2010, vol. 528, no. 1, pp. 112–121.CrossRefGoogle Scholar
  13. 13.
    Sidorov, Yu.G., Yakushev, M.V., Varavin, V.S., et al., Fiz. Tverd. Tela, 2015, vol. 57, no. 11, pp. 2095–2100.Google Scholar
  14. 14.
    Ezhlov, V.S., Mil’vidskaya, A.G., Molodtsova, E.V., and Mezhennyi, M.V., Mater. Elektron. Tekh., 2013, no. 4, pp. 13–17.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. V. Vaganova
    • 1
    • 2
  • L. N. Maskaeva
    • 1
    • 2
    Email author
  • V. I. Voronin
    • 3
  • V. F. Markov
    • 1
    • 2
  • V. G. Bamburov
    • 1
    • 4
  1. 1.Ural Federal University Named after the First President of Russia B.N. El’tsinYekaterinburgRussia
  2. 2.Ural Institute of State Fire Service of EMERCOM of RussiaYekaterinburgRussia
  3. 3.Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  4. 4.Institute of Solid State Chemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations