Inhomogeneous Boundary Value Problem for Complex Heat Transfer Equations with Fresnel Matching Conditions

Abstract

We consider an inhomogeneous boundary value problem for a system of semilinear elliptic equations modeling radiative heat transfer with Fresnel matching conditions on the surfaces of discontinuity of the refractive index. The unique solvability of the boundary value problem is proved without requiring the initial data to be small.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1

    Kovtanyuk, A.E., Grenkin, G.V., and Chebotarev, A.Yu., The use of the diffusion approximation for simulating radiation and thermal processes in the skin, Opt. Spectrosc., 2017, vol. 123, no. 2, pp. 194–199.

    Article  Google Scholar 

  2. 2

    Chebotarev, A.Y., Grenkin, G.V., Kovtanyuk, A.E., Botkin, N.D., and Hoffmann, K.-H., Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions, Commun. Nonlinear Sci. Numer. Simul., 2018, vol. 57, pp. 290–298.

    MathSciNet  Article  Google Scholar 

  3. 3

    Pinnau, R., Analysis of optimal boundary control for radiative heat transfer modeled by \(SP_1 \)-system, Commun. Math. Sci., 2007, vol. 5, no. 4, pp. 951–969.

    MathSciNet  Article  Google Scholar 

  4. 4

    Grenkin, G.V. and Chebotarev, A.Yu., A nonstationary problem of complex heat transfer, Comput. Math. Math. Phys., 2014, vol. 54, no. 11, pp. 1737–1747.

    MathSciNet  Article  Google Scholar 

  5. 5

    Grenkin, G.V. and Chebotarev, A.Yu., An inhomogeneous nonstationary complex heat transfer problem, Sib. Elektron. Mat. Izv., 2015, vol. 12, pp. 562–576.

    MATH  Google Scholar 

  6. 6

    Grenkin, G.V. and Chebotarev, A.Yu., Nonstationary problem of free convection with radiative heat transfer, Comput. Math. Math. Phys., 2016, vol. 56, no. 2, pp. 278–285.

    MathSciNet  Article  Google Scholar 

  7. 7

    Grenkin, G.V., Chebotarev, A.Yu., Kovtanyuk, A.E., Botkin, N.D., and Hoffmann, K.-H., Boundary optimal control problem of complex heat transfer model, J. Math. Anal. Appl., 2016, vol. 433, no. 2, pp. 1243–1260.

    MathSciNet  Article  Google Scholar 

  8. 8

    Kovtanyuk, A.E. and Chebotarev, A.Yu., An iterative method for solving a complex heat transfer problem, Appl. Math. Comput., 2013, vol. 219, no. 17, pp. 9356–9362.

    MathSciNet  MATH  Google Scholar 

  9. 9

    Kovtanyuk, A.E., Chebotarev, A.Yu., Botkin, N.D., and Hoffmann, K.-H., The unique solvability of a complex 3D heat transfer problem, J. Math. Anal. Appl., 2014, vol. 409, no. 2, pp. 808–815.

    MathSciNet  Article  Google Scholar 

  10. 10

    Kovtanyuk, A.E. and Chebotarev, A.Yu., Steady-state problem of complex heat transfer, Comput. Math. Math. Phys., 2014, vol. 54, no. 4, pp. 719–726.

    MathSciNet  Article  Google Scholar 

  11. 11

    Kovtanyuk, A.E. and Chebotarev, A.Yu., Stationary free convection problem with radiative heat exchange, Differ. Equations, 2014, vol. 50, no. 12, pp. 1592–1599.

    MathSciNet  Article  Google Scholar 

  12. 12

    Kovtanyuk, A.E., Chebotarev, A.Yu., Botkin, N.D., and Hoffmann, K.-H., Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer, J. Math. Anal. Appl., 2014, vol. 412, no. 1, pp. 520–528.

    MathSciNet  Article  Google Scholar 

  13. 13

    Kovtanyuk, A.E., Chebotarev, A.Yu., Botkin, N.D., and Hoffmann, K.-H., Unique solvability of a steady-state complex heat transfer model, Commun. Nonlinear Sci. Numer. Simul., 2015, vol. 20, no. 3, pp. 776–784.

    MathSciNet  Article  Google Scholar 

  14. 14

    Kovtanyuk, A.E., Chebotarev, A.Yu., Botkin, N.D., and Hoffmann, K.-H., Optimal boundary control of a steady-state heat transfer model accounting for radiative effects, J. Math. Anal. Appl., 2016, vol. 439, no. 2, pp. 678–689.

    MathSciNet  Article  Google Scholar 

  15. 15

    Chebotarev, A.Yu., Kovtanyuk, A.E., Grenkin, G.V., Botkin, N.D., and Hoffmann, K.-H., Nondegeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model, Appl. Math. Comput., 2016, vol. 289, pp. 371–380.

    MathSciNet  MATH  Google Scholar 

  16. 16

    Kovtanyuk, A.E. and Chebotarev, A.Yu., Nonlocal unique solvability of a steady-state problem of complex heat transfer, Comput. Math. Math. Phys., 2016, vol. 56, no. 5, pp. 802–809.

    MathSciNet  Article  Google Scholar 

  17. 17

    Chebotarev, A.Yu., Grenkin, G.V., and Kovtanyuk, A.E., Inhomogeneous steady-state problem of complex heat transfer, ESAIM Math. Model. Numer. Anal., 2017, vol. 51, no. 6, pp. 2511–2519.

    MathSciNet  Article  Google Scholar 

  18. 18

    Chebotarev, A.Y., Kovtanyuk, A.E., and Botkin, N.D., Problem of radiation heat exchange with boundary conditions of the Cauchy type , Commun. Nonlinear Sci. Numer. Simul., 2019, vol. 75, pp. 262–269.

    MathSciNet  Article  Google Scholar 

  19. 19

    Chebotarev, A.Yu., Grenkin, G.V., Kovtanyuk, A.E., Botkin, N.D., and Hoffmann, K.-H., Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange, J. Math. Anal. Appl., 2018, vol. 460, no. 2, pp. 737–744.

    MathSciNet  Article  Google Scholar 

  20. 20

    Chebotarev, A.Yu. and Pinnau, R., An inverse problem for a quasi-static approximate model of radiative heat transfer, J. Math. Anal. Appl., 2019, vol. 472, no. 1, pp. 314–327.

    MathSciNet  Article  Google Scholar 

  21. 21

    Grenkin, G.V. and Chebotarev, A.Yu., Inverse problem for complex heat transfer equations, Zh. Vychisl. Mat. Mat. Fiz., 2019, vol. 59, no. 8, pp. 1420–1430.

    MATH  Google Scholar 

  22. 22

    Ghattassi, M., Roche, J.R., and Schmitt, D., Existence and uniqueness of a transient state for the coupled radiative-conductive heat transfer problem, Comput. Math. Appl., 2018, vol. 75, no. 11, pp. 3918–3928.

    MathSciNet  Article  Google Scholar 

  23. 23

    Amosov, A.A., Global solvability of a nonlinear nonstationary problem with a nonlocal boundary condition of radiative heat transfer type, Differ. Equations, 2005, vol. 41, no. 1, pp. 96–109.

    MathSciNet  Article  Google Scholar 

  24. 24

    Amosov, A.A., Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency, J. Math. Sci., 2010, vol. 165, no. 1, pp. 1–41.

    MathSciNet  Article  Google Scholar 

  25. 25

    Amosov, A.A., Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency, J. Math. Sci., 2010, vol. 164, no. 3, pp. 309–344.

    MathSciNet  Article  Google Scholar 

  26. 26

    Amosov, A.A., Unique solvability of a nonstationary problem of radiative-conductive heat exchange in a system of semitransparent bodies, Russ. J. Math. Phys., 2016, vol. 23, no. 3, pp. 309–334.

    MathSciNet  Article  Google Scholar 

  27. 27

    Amosov, A.A., Stationary problem of complex heat transfer in a system of semitransparent bodies with boundary conditions of diffuse reflection and refraction of radiation, Comput. Math. Math. Phys., 2017, vol. 57, no. 3, pp. 515–540.

    MathSciNet  Article  Google Scholar 

  28. 28

    Amosov, A.A., Unique solvability of stationary radiative-conductive heat transfer problem in a system of semitransparent bodies, J. Math. Sci. (U.S.), 2017, vol. 224, no. 5, pp. 618–646.

    MathSciNet  Article  Google Scholar 

  29. 29

    Amosov, A.A., Nonstationary problem of complex heat transfer in a system of semitransparent bodies with boundary-value conditions of diffuse reflection and refraction of radiation, J. Math. Sci. (U.S.), 2018, vol. 233, no. 6, pp. 777–806.

    Article  Google Scholar 

  30. 30

    Amosov, A.A., Asymptotic behavior of a solution to the radiative transfer equation in a multilayered medium with diffuse reflection and refraction conditions, J. Math. Sci., 2020, vol. 244, no. 4, pp. 541–575.

    MathSciNet  Article  Google Scholar 

  31. 31

    Amosov, A.A. and Krymov, N.E., On a nonstandard boundary value problem arising in homogenization of complex heat transfer problems, J. Math. Sci. (U.S.), 2020, vol. 244, no. 3, pp. 357–377.

    MathSciNet  Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-01-00113.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Chebotarev.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chebotarev, A.Y. Inhomogeneous Boundary Value Problem for Complex Heat Transfer Equations with Fresnel Matching Conditions. Diff Equat 56, 1628–1633 (2020). https://doi.org/10.1134/S00122661200120113

Download citation