Skip to main content
Log in

Adaptive Numerical Methods for Solving the Problem about Scattering on a Force Center

  • Numerical Methods
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We construct families of adaptive symplectic conservative numerical methods for solving problems about scattering on a force center. The methods preserve the global properties of the exact solution of the problem and approximate the dependences of the phase variables on time with the second, fourth, or sixth approximation order. The variable time step is selected automatically in two different ways depending on the properties of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Landau, L.D. and Lifshits, E.M., Mekhanika (Mechanics), Moscow: Nauka, 1973.

    Google Scholar 

  2. Hairer, E., Lubich, C., and Wanner, G., Geometric Numerical Integration, Berlin: Springer, 2006.

    MATH  Google Scholar 

  3. Suris, Y.B., On the conservation of the symplectic structure in numerical solutions of Hamilton systems, in Numerical Solutions of Ordinary Differential Equations, Moscow: Keldysh Inst. Appl. Math, USSR Acad. Sci., 1988. pp. 148–160.

    Google Scholar 

  4. Sanz-Serna, J.M., Runge-Kutta schemes for Hamiltonian systems, BIT, 1988, vol. 28, no. 4, pp. 877–883.

    Article  MathSciNet  MATH  Google Scholar 

  5. Reich, S., Momentum conserving symplectic integrators, Physica D, 1994, vol. 76, pp. 375–383.

    Article  MathSciNet  MATH  Google Scholar 

  6. McLachan, R.I., Quispel, G.R.W., and Robidoux, N., Geometric integration using discrete gradients, Phil. Trans. R. Soc. London Ser. A, 1999, vol. 357, pp. 1021–1045.

    Article  MathSciNet  MATH  Google Scholar 

  7. Marsden, J.E. and West, M., Discrete mechanics and variational integrators, Acta Numerica, 2001, vol. 10, pp. 1–158.

    Article  MathSciNet  MATH  Google Scholar 

  8. LaBudde, R.A. and Greenspen, D., Discrete mechanics. A general treatment, J. Comput. Phys., 1974, vol. 15, pp. 134–167.

    Article  MathSciNet  MATH  Google Scholar 

  9. Minesaki, Y. and Nakamura, Y., A new discretization of the Kepler motion which conserves the Runge-Lenz vector, Phys. Lett. A, 2002, vol. 306, pp. 127–133.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kozlov, R., Conservative discretization of the Keplerian motions, J. Phys. A: Math. Theor., 2007, vol. 40, pp. 4529–4539.

    Article  MATH  Google Scholar 

  11. Cieslinski, J.L., An orbit-preserving discretization of the classical Keplerian problem, Phys. Lett. A, 2007, vol. 370, pp. 8–12.

    Article  MathSciNet  MATH  Google Scholar 

  12. Elenin, G.G. and Elenina, T.G., A one-parameter family of difference schemes for the numerical solution of the Keplerian problem, Comput. Math. Math. Phys., 2015, vol. 55, no. 8, pp. 1292–1298.

    Article  MathSciNet  MATH  Google Scholar 

  13. Elenin, G.G. and Elenina, T.G., Adaptive symplectic conservative numerical methods for the Kepler problem, Differ. Equations, 2017, vol. 53, no. 7, pp. 923–934.

    Article  MathSciNet  MATH  Google Scholar 

  14. Elenin, G.G. and Elenina, T.G., Parametrization of the solution of the Kepler problem and new adaptive numerical methods based on this parametrization, Differ. Equations, 2018, vol. 54, no. 7, pp. 911–918.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ryzhik, I.S. and Grandshtein, I.M., Tablitsy integralov, summ, ryadov i proizvedenii (Tables of Integrals, Sums, Series, and Products), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  16. Oewel, W. and Sofrouniou, M., Symplectic Runge-Kutta schemes II: Classification of symmetric methods, Preprint Univ. Paderborn, 1997.

  17. Elenin, G.G. and Shlyakhov, P.I., The geometric structure of the parameter space of the three-stage symplectic Runge-Kutta methods, Math. Models Comput. Simul., 2011, vol. 23, no. 5, pp. 680–689.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. G. Elenin or T. G. Elenina.

Additional information

Russian Text © The Author(s), 2019, published in Differentsial’nye Uravneniya, 2019, Vol. 55, No. 7, pp. 982–995.

Funding

The work was supported in part by Lomonosov Moscow State University (R&D project “Mathematical modelling in natural sciences and computational methods”) and Scientific Research Institute of System Development of the Russian Academy of Sciences, project no. 0065-2019-0007.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elenin, G.G., Elenina, T.G. Adaptive Numerical Methods for Solving the Problem about Scattering on a Force Center. Diff Equat 55, 949–962 (2019). https://doi.org/10.1134/S0012266119070085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266119070085

Navigation