Skip to main content
Log in

Numerical Model of Compression Plasma Flows in Channels under a Longitudinal Magnetic Field

  • Numerical Methods
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We consider a mathematical model of plasma flows in nozzle channels formed by two coaxial electrodes. The acceleration of plasma in an azimuthal magnetic field is accompanied by its compression and heating in the compression zone at the channel axis past the tip of the shorter central electrode. The mathematical apparatus of the model is based on numerically solving two-dimensional MHD problems using the Zalesak flux-corrected transport (Z-FCT) scheme. In the computations, we study the dependence of the compression phenomenon and its quantitative characteristics on the channel geometry, the problem parameters, and the additional longitudinal magnetic field present in the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morozov, A.I., The acceleration of a plasma by a magnetic field, J. Exp. Theor. Phys., 1957, vol. 5, no. 2, pp. 215–220.

    Google Scholar 

  2. Artsimovich, L.A., Luk’yanov, S.Yu., Podgornyi, I.M., and Chuvatin, S.A., Electrodynamic acceleration of a plasma by a magnetic field, J. Exp. Theor. Phys., 1958, vol. 6, no. 1, pp. 1–5.

    Google Scholar 

  3. Morozov, A.I. and Solov’ev, L.S., Steady-state plasma flow in a magnetic field, Rev. Plasma Phys., Leontovich, M.A., Ed., 1980, vol. 8, pp. 1–104.

  4. Brushlinskii, K.V. and Morozov, A.I., Calculation of two-dimensional plasma flows in channels, Rev. Plasma Phys., Leontovich, M.A., Ed., 1980, vol. 8, pp. 105–197.

  5. Morozov, A.I., Fizicheskie osnovy kosmicheskikh elektroreaktivnykh dvigatelei (Physical Basics of Space Electrojet Engines), Moscow: Atomizdat, 1978.

    Google Scholar 

  6. Morozov, A.I., Vvedenie v plazmodinamiku, Moscow: Fizmatlit, 2008, 2nd ed. Engl. transl.: Introduction to Plasma Dynamics, Boca Raton: CRC Press, 2012.

    Google Scholar 

  7. Brushlinskii, K.V., Matematicheskie i vychislitel’nye zadachi magnitnoi gazodinamiki (Mathematical and Computational Problems of Magnetic Gas Dynamics), Moscow: Binom, 2009.

    Google Scholar 

  8. Morozov, A.I., Steady-state plasma accelerators and their possible applications in thermonuclear research, Nucl. Fusion, 1969, Special Suppl., pp. 111–119.

  9. Morozov, A.I., Thermonuclear systems with dense plasma, Vestn. Akad. Nauk SSSR, 1969, no. 6, pp. 28–36.

  10. Astashinskii, V.M., Bakanovich, G.I., Kuz’mitskii, A.M., and Min’ko, L.Ya., Selection of operating modes and parameters of a magnetoplasma compressor, Inzh.-Fiz. Zh., 1992, vol. 62, no. 3, pp. 386–390.

    Google Scholar 

  11. Godunov, S.K. and Ryaben’kii, V.S., Raznostnye skhemy, Moscow: Nauka, 1973. Engl. transl.: Difference Schemes, North Holland, 1987.

    Google Scholar 

  12. Samarskii, A.A., Teoriya raznostnykh skhem, Moscow: Nauka, 1977. Engl. transl.: The Theory of Difference Schemes, CRC Press, 2001.

    Google Scholar 

  13. Samarskii, A.A. and Popov, Yu.P., Raznostnye metody resheniya zadach gazovoi dinamiki (Difference Methods for Solving Gasdynamic Problems), Moscow: Nauka, 1980.

    Google Scholar 

  14. Richtmyer, R.D. and Morton, K.W., Difference Methods for Initial Value Problems, New York-London-Sydney: Kluwer Academic/Plenum Publishers, 1967.

    MATH  Google Scholar 

  15. Oran, E. and Boris, J., Numerical Simulation of Reactive Flow, New York-Amsterdam-London: Elsevier Science, 1987.

    MATH  Google Scholar 

  16. Brushlinskii, K.V., Zhdanova, N.S., and Stepin, E.V., Acceleration of plasma in coaxial channels with preshaped electrodes and longitudinal magnetic field, Comput. Math. Math. Phys., 2018, vol. 58, no. 4, pp. 593–603.

    Article  MathSciNet  MATH  Google Scholar 

  17. Brushlinskii, K.V., Mathematical models of plasma in Morozov’s projects, Plasma Phys. Rep., 2019, vol. 45, no. 1, pp. 33–45.

    Article  MathSciNet  Google Scholar 

  18. Brushlinskii, K.V., Morozov, A.I., Paleichik, V.V., and Savel’ev, V.V. Two-dimensional compressional plasma flow in coaxial channel, Sov. J. Plasma Phys., 1976, vol. 2, no. 4, pp. 291–296.

    Google Scholar 

  19. Ananin, S.I., Calculation of the dynamics of compressive flows in a quasisteady plasma accelerator in the ring inflow approximation, Sov. J. Plasma Phys., 1992, vol. 18, no. 3, pp. 205–207.

    Google Scholar 

  20. Kalugin, G.A., Effect of dissipative processes on compression flows in a plasma accelerator, Fluid Dynam., 1991, vol. 26, no. 3, pp. 402–408.

    Article  MathSciNet  Google Scholar 

  21. Kalugin, G.A., Numerical calculation of compression flows in plasma accelerator channel, Mat. Model., 1991, vol. 3, no. 1, pp. 25–36.

    Google Scholar 

  22. Brushlinskii, K.V. and Zhdanova, N.S., MHD flows in the channels of plasma accelerators with a longitudinal magnetic field, Plasma Phys. Rep., 2008, vol. 34, no. 12, pp. 1037–1045.

    Article  Google Scholar 

  23. Volkov, Ya.F., Kulik, N.V., Marinin, N.V., Morozov, A.I., Tereshin, V.I., et al. Analysis of plasma flow parameters generated by full-scale QSPA Kh-50, Sov. J. Plasma Phys., 1992, vol. 18, no. 4, pp. 718–723.

    Google Scholar 

  24. Brushlinskii, K.V. and Ratnikova, T.A., Some problems of two-fluid MHD with a transverse magnetic field, Mat. Model., 1996, vol. 8, no. 2, pp. 75–90.

    Google Scholar 

  25. Kozlov, A.N., Two-fluid magnetohydrodynamic model of plasma flows in a quasi-steady-state accelerator with a longitudinal magnetic field, J. Appl. Mech. Tech. Phys., 2009, vol. 50, no. 3, pp. 396–405.

    Article  MATH  Google Scholar 

  26. Kulikovskiii, A.G. and Lyubimov, G.A., Magnitnaya gidrodinamika, Moscow: Logos, 2005, 2nd ed. Engl. version: Magnetohydrodynamics, Boston: Addison-Wesley, 1965.

    Google Scholar 

  27. Brushlinskii, K.V. and Zhdanova, N.S., Computation of axisymmetric MHD flows in a channel with an external longitudinal magnetic field, Comput. Math. Math. Phys., 2006, vol. 46, no. 3, pp. 527–536.

    Article  MathSciNet  MATH  Google Scholar 

  28. Zalesak, S.T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 1979, vol. 31, pp. 335–362.

    Article  MathSciNet  MATH  Google Scholar 

  29. Harten, A., Conservation schemes for hyperbolic conservation laws, J. Comp. Phys., 1983, vol. 49, pp. 357–393.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ratnikova, T.A., Godunov’s scheme in MHD problems with a transverse magnetic field, Mat. Model., 1997, vol. 9, no. 8, pp. 3–15.

    MathSciNet  MATH  Google Scholar 

  31. Godunov, S.K., A difference method for the numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb., 1959, vol. 47 (89), no. 3, pp. 271–306.

    MathSciNet  MATH  Google Scholar 

  32. Brushlinskii, K.V., Matematicheskie osnovy vychislitel’noi mekhaniki zhidkosti, gaza i plazmy (Mathematical Foundations of Computational Mechanics of Fluid, Gas, and Plasma), Dolgoprudnyi: Intellekt, 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. V. Brushlinskii or E. V. Stepin.

Additional information

Russian Text © The Author(s), 2019, published in Differentsial’nye Uravneniya, 2019, Vol. 55, No. 7, pp. 929–939.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brushlinskii, K.V., Stepin, E.V. Numerical Model of Compression Plasma Flows in Channels under a Longitudinal Magnetic Field. Diff Equat 55, 894–904 (2019). https://doi.org/10.1134/S0012266119070036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266119070036

Navigation