Skip to main content
Log in

Differential Equations with Hysteresis Operators. Existence of Solutions, Stability, and Oscillations

  • Control Theory
  • Published:
Differential Equations Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Visintin, A., Differential Models of Hysteresis, Berlin: Springer-Verlag, 1994.

    Book  MATH  Google Scholar 

  2. Visintin, A., Mathematical models of hysteresis, The Science of Hysteresis, Vol. 1: Mathematical Modeling and Applications, Berotti, G. and Mayergoyz, I.D., Eds., Amsterdam: Elsevier/Academic, 2006, pp. 1–114.

  3. Filippov, A. F., Differential Equations with Discontinuous Righthand Sides, Dordrecht: Kluwer, 1988.

    Book  Google Scholar 

  4. Yakubovich, V. A., Leonov, G.A., and Gelig, A.Kh., Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities, Singapore: World Scientific, 2004.

    Book  MATH  Google Scholar 

  5. Andronov, A.A. and Bautin, N.N., Sur un cas dégénérée du problème général de régulation directe, C. R. (Dokl.) Acad. Sci. USSR, 1945, vol. 46, no. 7, pp. 277–279.

    MATH  Google Scholar 

  6. Fel’dbaum, A.A., Simplest bang-bang automatic control systems, Avtom. Telemekh., 1949, no. 10, pp. 249–260.

    Google Scholar 

  7. Andronov, A.A., Vitt, A.A., and Khaikin, S.E., Teoriya kolebanii (Theory of Oscillations), Moscow: Gos. Izd. Fiz. Mat. Lit., 1959, 2nd ed.

  8. Yakubovich, V.A., The conditions for absolute stability of a control system with a hysteresis-type nonlinearity, Sov. Dokl. Phys., 1963, vol. 8, pp. 235–237.

    MATH  Google Scholar 

  9. Yakubovich, V.A., The method of matrix inequalities in the theory of stability of non-linear controlled systems. III: Absolute stability of systems with hysteresis non-linearities, Autom. Remote Control, 1965, vol. 26, no. 5, pp. 577–592.

    MathSciNet  MATH  Google Scholar 

  10. Yakubovich, V.A., Methods of Absolute Stability Theory, Methods for the Analysis of Nonlinear Automatic Control Systems, Nelepin, R.A., Ed., Moscow: Nauka, 1975, pp. 74–180.

    Google Scholar 

  11. Barabanov, N.E. and Yakubovich, V.A., Absolute stability of control systems with one hysteresis nonlinearity, Autom. Remote Control, 1980, vol. 40, pp. 1713–1719.

    MATH  Google Scholar 

  12. Logemann, H. and Ryan, E.P., Systems with hysteresis in the feedback loop: existence, regularity and asymptotic behaviour of solutions, ESAIM: Control Optim. Calc. Var., 2003, vol. 9, pp. 169–196.

    MATH  Google Scholar 

  13. Leonov, G.A., Necessary frequency conditions for the absolute stability of nonstationary systems, Autom. Remote Control, 1981, vol. 42, no. 1, pp. 9–13.

    MathSciNet  MATH  Google Scholar 

  14. Leonov, G.A. and Filina, M.Yu., Instability and oscillations of systems with hysteretic nonlinearities, Autom. Remote Control, 1983, vol. 44, no. 1, pp. 33–38.

    MathSciNet  MATH  Google Scholar 

  15. Leonov, G.A., The nonlocal reduction method in the theory of absolute stability of nonlinear systems: I, Autom. Remote Control, 1984, vol. 45, no. 2, pp. 45–53.

    MathSciNet  Google Scholar 

  16. Leonov, G.A., Nonlocal reduction method in the theory of absolute stability of nonlinear systems: II, Autom. Remote Control, 1984, vol. 45, no. 3, pp. 315–323.

    MathSciNet  MATH  Google Scholar 

  17. Leonov, G.A. and Smirnova, V.B., Method of nonlocal reduction in stability theory, in Metod funktsii Lyapunova i ego prilozheniya (The Method of Lyapunov Functions and Its Applications), Novosibirsk: Nauka, 1984, pp. 98–106.

    Google Scholar 

  18. Leonov, G.A. and Smirnova, V.B., Nonlocal reduction method in differential equations theory, in Topics in Mathematical Analysis: A Volume Dedicated to the Memory of A. L. Cauchy, Singapore: World Sci., 1989, pp. 658–694.

    Chapter  MATH  Google Scholar 

  19. Ewing, J.A., Experimental research in magnetism, Philos. Trans. R. Soc. London, 1885, vol. 176, no. 2, pp. 131–159.

    Google Scholar 

  20. Ishlinskii, A.Yu., Some applications of statistics in describing deformation laws, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 1944, no. 9, pp. 583–590.

    Google Scholar 

  21. Preisach, F., Über die magnetische Nachwirkung, Z. Phys. A: Hadrons Nucl., 1935, vol. 94, no. 5, pp. 277–302.

    Article  Google Scholar 

  22. Enderby, J.A., The domain model of hysteresis. Part 1: Independent domains, Trans. Faraday Soc., 1955, vol. 51, pp. 835–848.

    Article  Google Scholar 

  23. Enderby, J.A., The domain model of hysteresis. Part 2: Interacting domains, Trans. Faraday Soc., 1956, vol. 52, pp. 106–120.

    Article  Google Scholar 

  24. Prandtl, L., Ein Gedankenmodell zur kinetischen Theorie der festen Körper, Z. Angew. Math. Mech., 1928, vol. 8, no. 2, pp. 85–106.

    Article  MATH  Google Scholar 

  25. Everett, D.H. and Whitton, W.I., A general approach to hysteresis, Trans. Faraday Soc., 1952, vol. 48, pp. 749–757.

    Article  Google Scholar 

  26. Everett, D.H. and Smith, F. W., A general approach to hysteresis. Part 2: Development of the domain theory, Trans. Faraday Soc., 1954, vol. 50, pp. 187–197.

    Article  Google Scholar 

  27. Everett, D.H., A general approach to hysteresis. Part 3: A formal treatment of the independent domain model of hysteresis, Trans. Faraday Soc., 1954, vol. 50, pp. 1077–1096.

    Article  Google Scholar 

  28. Everett, D.H., A general approach to hysteresis. Part 4: An alternative formulation of the domain model, Trans. Faraday Soc., 1955, vol. 51, pp. 1551–1557.

    Article  Google Scholar 

  29. Jiles, D.C. and Atherton, D.L., Ferromagnetic hysteresis, IEEE Trans. Magn., 1983, vol. 19, no. 5, pp. 2183–2185.

    Article  Google Scholar 

  30. Jiles, D.C., Introduction to Magnetism and Magnetic Materials, London: Chapman & Hall, 2015.

    Google Scholar 

  31. Coleman, B.D. and Hodgdon, M.L., A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials, Int. J. Eng. Sci., 1986, vol. 24, no. 6, pp. 897–919.

    Article  MATH  Google Scholar 

  32. Coleman, B.D. and Hodgdon, M.L., On a class of constitutive relations for ferromagnetic hysteresis, Arch. Ration. Mech. Anal., 1987, vol. 99, no. 4, pp. 375–396.

    Article  MathSciNet  MATH  Google Scholar 

  33. Koiter, W.T., General theorems for elastic-plastic solids, Progress in Solid Mechanics, Sneddon, I.N. and Hill, R., Eds., Amsterdam: North Holland, 1960, pp. 165–221.

    Google Scholar 

  34. The Science of Hysteresis, Berotti, G. and Mayergoyz, I.D., Eds., Amsterdam: Elsevier/Academic, 2006, Vols.1–3.

  35. Models of Hysteresis, Visintin, A., Ed., Harlow: Longman, 1993.

  36. Rieder, G., Elastic obstacles for bloch walls, Models of Hysteresis, Visintin, A., Ed., Harlow: Longman, 1993, pp. 143–157.

    Google Scholar 

  37. Krasnosel’skii, M.A. and Rachinskii, D.I., Invariant convex classes of states of continual relay systems, Autom. Remote Control, 1994, vol. 55, no. 10, part 1, pp. 1405–1412.

    MathSciNet  Google Scholar 

  38. Krasnoselskii, M.A., Rachinskii, D.I., and Mayergoyz, I.D., On canonical states of continual systems of relays, Z. Angew. Math. Mech., 1995, vol. 75, no. 7, pp. 515–522.

    Article  MathSciNet  MATH  Google Scholar 

  39. Krasnoselskii, M.A. and Pokrovskii, A.V., Systems with Hysteresis, Heidelberg: Springer-Verlag, 1989.

    Book  Google Scholar 

  40. Brokate, M. and Sprekels, J., Hysteresis and Phase Transitions, New York: Springer-Verlag, 1996.

    Book  MATH  Google Scholar 

  41. Rachinskii, D.I., Equivalent combinations of stops, Autom. Remote Control, 1998, vol. 59, no. 10, part 1, pp. 1370–1378.

    MATH  Google Scholar 

  42. Bouc, R., Solution périodique de l’équation de la “ferrorésonance” avec hystérésis, C. R. Seances Acad. Sci. Ser. A, 1966, vol. 263, no. 15, pp. 497–499.

    MATH  Google Scholar 

  43. Bouc, R., Modèle mathématique d’hystérésis. Application aux systèmes à un degré de liberté, Ph. D. Thesis, Marseille, 1969.

    Google Scholar 

  44. Bouc, R., Modèle mathématique d’hystérésis, Acustica, 1971, vol. 24, pp. 16–25.

    MATH  Google Scholar 

  45. Brokate, M., Hysteresis operators, Phase Transitions and Hysteresis, Visintin, A., Ed., Lecture Notes in Math., vol. 1584, Berlin: Springer-Verlag, 1994, pp. 1–38.

  46. Krejčí, P., Hysteresis, Convexity, and Dissipation in Hyperbolic Equations, Tokyo: Gakkotosho, 1996.

    MATH  Google Scholar 

  47. Della Torre, E., Magnetic Hysteresis, New York: Wiley, 2000.

    Book  Google Scholar 

  48. Macki, J.W., Nistri, P., and Zecca, P., Mathematical models for hysteresis, SIAM Rev., 1993, vol. 35, no. 1, pp. 94–123.

    Article  MathSciNet  MATH  Google Scholar 

  49. Mayergoyz, I.D., Mathematical Models of Hysteresis, New York: Springer-Verlag, 1991.

    Book  MATH  Google Scholar 

  50. Mayergoyz, I.D., Mathematical Models of Hysteresis and Their Applications, Amsterdam: Elsevier/ Academic, 2003.

    Google Scholar 

  51. Müller, I., Six lectures on shape memory, Boundaries, Interfaces, and Transitions, Delfour, M.C., Ed., CRM Proceedings and Lecture Notes, vol. 13, Providence: Amer. Math. Soc., 1998, pp. 125–161.

  52. Visintin, A., Six talks on hysteresis, Boundaries, Interfaces, and Transitions, Delfour, M.C., Ed., CRM Proceedings and Lecture Notes, vol. 13, Providence: Amer. Math. Soc., 1998, pp. 207–236.

    Google Scholar 

  53. Hassani, V., Tjahjowidodo, T., and Do, T.N., A survey on hysteresis modeling, identification, and control, Mech. Syst. Signal Process., 2014, vol. 49, no. 1, pp. 209–233.

    Article  Google Scholar 

  54. Iványi, A., Hysteresis Models in Electromagnetic Computation, Budapest: Akadémiai Kiadó, 1997.

    Google Scholar 

  55. Bennett, L.H., Preface, Proceedings of the Workshop on Hysteresis Modeling and Micromagnetism (Asburn, 1996), Phys. B (Amsterdam, Neth.), 1997, vol. 233, no.4.

    Google Scholar 

  56. Brokate, M., Dressler, K., and Krejčí, P., The Mróz model: a hysteresis operator for rate-independent plasticity, World Congress of Nonlinear Analysis’92 (Tampa, 1992), Berlin: Walter de Gruyter, 1996, vol. 1, pp. 797–806.

    MATH  Google Scholar 

  57. Hornung, U., The mathematics of hysteresis, Bull. Austral. Math. Soc., 1984, vol. 30, no. 2, pp. 271–287.

    Article  MathSciNet  MATH  Google Scholar 

  58. Krejčí, P., Vector hysteresis models, Eur. J. Appl. Math., 1991, vol. 2, no. 3, pp. 281–292.

    Article  MathSciNet  MATH  Google Scholar 

  59. Krejčí, P., Hysteresis operators—a new approach to evolution differential inequalities, Commentat. Math. Univ. Carolin., 1989, vol. 30, no. 3, pp. 525–536.

    MathSciNet  MATH  Google Scholar 

  60. Krejčí, P., Hysteresis models of plasticity, Preprint, 1993.

    MATH  Google Scholar 

  61. Phase Transitions and Hysteresis, Visintin, A., Ed., Lecture Notes in Math., vol. 1584, Berlin: Springer-Verlag, 1994.

  62. Cardelli, E., Della Torre, E., and Ban, G., Experimental determination of Preisach distribution functions in magnetic cores, Phys. B (Amsterdam, Neth.), 2000, vol. 275, nos. 1–3, pp. 262–269.

    Article  Google Scholar 

  63. Borzdyko, V.I., Hysteresis nonstationary nonlinearities, Ukr. Math. J., 2008, vol. 60, no. 3, pp. 339–356.

    Article  MathSciNet  MATH  Google Scholar 

  64. Leonov, G.A., Burkin, I.M., and Shepeljavyi, A.I., Frequency Methods in Oscillation Theory, Dordrecht: Kluwer, 1996.

    Book  MATH  Google Scholar 

  65. Brokate, M., Pokrovskii, A., Rachinskii, D., and Rasskazov, O., Differential equations with hysteresis via a canonical example, The Science of Hysteresis, vol. 1: Mathematical Modeling and Applications, Berotti, G. and Mayergoyz, I.D., Eds., Amsterdam: Elsevier/Academic, 2006, pp. 125–292.

  66. Borzdyko, V.I., Differential Equations with Complicated Nonlinearities, Extended Abstract of Doctoral (Phys.-Math.) Dissertation, Dushanbe, 2000.

    Google Scholar 

  67. Borzdyko, V.I., Sufficient tests for the existence and uniqueness of a solution of the Cauchy problem for a differential equation with a hysteresis nonlinearity, Differ. Equations, 2013, vol. 49, no. 12, pp. 1469–1475.

    Article  MathSciNet  MATH  Google Scholar 

  68. Borzdyko, V.I., On some classes of uniqueness theorems for differential equations with hysteresis nonlinearities, Dokl. Akad. Nauk Tadzh. SSR, 1985, vol. 28, no. 10, pp. 547–551.

    MathSciNet  MATH  Google Scholar 

  69. Borzdyko, V.I., Uniqueness theorem for differential equations with hysteresis nonlinearities, Differ. Equations, 1987, vol. 23, no. 6, pp. 623–626.

    MathSciNet  MATH  Google Scholar 

  70. Borzdyko, V.I., Uniqueness theorems of Wend type for differential equations with hysteresis nonlinearities, Izv. Akad. Nauk Tadzh. SSR, Otd. Fiz.-Mat. Geol.-Khim. Nauk, 1988, vol. 108, no. 2, pp. 63–65.

    MathSciNet  Google Scholar 

  71. Borzdyko, V.I., Uniqueness theorem of Bernfeld, Driver, and Lakshmikantham type for differential equations with hysteresis nonlinearities, Dokl. Akad. Nauk Tadzh. SSR, 1987, vol. 30, no. 2, pp. 74–77.

    MathSciNet  MATH  Google Scholar 

  72. Borzdyko, V.I., Uniqueness conditions for differential-equation systems with hysteresis terms, Differ. Equations, 1988, vol. 24, no. 8, pp. 827–830.

    MATH  Google Scholar 

  73. Borzdyko, V.I., Existence and uniqueness conditions of the solution of the Cauchy problem for a system of ordinary differential equations with hysteresis nonlinearities, Dokl. Akad. Nauk Tadzh. SSR, 1987, vol. 30, no. 12, pp. 766–770.

    MathSciNet  MATH  Google Scholar 

  74. Vladimirov, A.A., Krasnosel’skii, M.A., and Chernorutskii, V.V., The Cauchy problem for systems with hysteresis, Dokl. Math., 1993, vol. 48, no. 3, pp. 502–506.

    MathSciNet  Google Scholar 

  75. Rachinskii, D.I., The Cauchy problem for differential equations with a Mróz hysteresis nonlinearity, Differ. Equations, 1997, vol. 33, no. 8, pp. 1047–1054.

    MathSciNet  Google Scholar 

  76. Krejčí, P., A remark on the local Lipschitz continuity of vector hysteresis operators, Appl. Math., 2001, vol. 46, no. 1, pp. 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  77. Krejčí, P. and Sprekels, J., Hysteresis operators in phase-field models of Penrose–Fife type, Appl. Math., 1998, vol. 43, no. 3, pp. 207–222.

    Article  MathSciNet  MATH  Google Scholar 

  78. Krejčí, P. and Sprekels, J., On a system of nonlinear PDEs with temperature-dependent hysteresis in one-dimensional thermoplasticity, J. Math. Anal. Appl., 1997, vol. 209, no. 1, pp. 25–46.

    Article  MathSciNet  MATH  Google Scholar 

  79. Krejčí, P. and Sprekels, J., Global solutions to a coupled parabolic–hyperbolic system with hysteresis in 1-D magnetoelasticity, Nonlinear Anal. Theory Methods Appl., 1998, vol. 33, no. 4, pp. 341–358.

    Article  MathSciNet  MATH  Google Scholar 

  80. Krejčí, P. and Sprekels, J., A hysteresis approach to phase-field models, Nonlinear Anal. Theory Methods Appl., 2000, vol. 39, no. 5, pp. 569–586.

    Article  MathSciNet  MATH  Google Scholar 

  81. Krejčí, P. and Sprekels, J., Strong solutions to equations of visco-thermo-plasticity with a temperaturedependent hysteretic strain-stress law, Solid Mech. Appl., 1999, vol. 66, pp. 237–244.

    Google Scholar 

  82. Chernorutskii, V. and Rachinskii, D., On uniqueness of an initial-value problem for ODE with hysteresis, Nonlinear Differ. Equations Appl., 1997, vol. 4, no. 3, pp. 391–399.

    Article  MathSciNet  Google Scholar 

  83. Kopfová, J., Uniqueness theorem for a Cauchy problem with hysteresis, Proc. Amer. Math. Soc., 1999, vol. 127, no. 12, pp. 3527–3532.

    Article  MathSciNet  MATH  Google Scholar 

  84. Mróz, Z., On the description of anisotropic workhardening, J. Mech. Phys. Solids, 1967, vol. 15, no. 3, pp. 163–175.

    Article  Google Scholar 

  85. Kopfová, J., Semigroup approach to the question of stability for a partial differential equation with hysteresis, J. Math. Anal. Appl., 1998, vol. 223, no. 1, pp. 272–287.

    Article  MathSciNet  MATH  Google Scholar 

  86. Kopfová, J. and Kopf, T., Differential equations, hysteresis, and time delay, Z. Angew. Math. Phys., 2002, vol. 53, no. 4, pp. 676–691.

    Article  MATH  Google Scholar 

  87. Kopfová, J., Periodic solutions and asymptotic behavior of a PDE with hysteresis in the source term, Rocky Mt. J. Math., 2006, vol. 36, no. 2, pp. 539–554.

    Article  MathSciNet  MATH  Google Scholar 

  88. Kopfová, J., Entropy condition for a quasilinear hyperbolic equation with hysteresis, Differ. Integr. Equations, 2005, vol. 18, no. 4, pp. 451–467.

    MathSciNet  MATH  Google Scholar 

  89. Kopfová, J., Hysteresis in a first order hyperbolic equation, Dissipative Phase Transitions, Colli, P., Kenmochi, N., and Sprekels, J., Eds., Series on Advances in Mathematics for Applied Sciences, vol. 71, Singapore, World Sci., 2006, pp. 141–150.

    Chapter  Google Scholar 

  90. Eleuteri, M. and Kopfová, J., Uniqueness and decay estimates for a class of parabolic partial differential equations with hysteresis and convection, Nonlinear Anal. Theory Methods Appl., 2010, vol. 73, no. 1, pp. 48–65.

    Article  MathSciNet  MATH  Google Scholar 

  91. Yakubovich, V.A., The solution of certain matrix inequalities in automatic control theory, Sov. Dokl. Math., 1962, vol. 3, pp. 620–623.

    MATH  Google Scholar 

  92. Natanson, I.P., Teoriya funktsii veshchestvennoi peremennoi (Theory of Functions of a Real Variable), Moscow: Nauka, 1974.

    Google Scholar 

  93. Logemann, H., Ryan, E.P., and Shvartsman, I., A class of differential-delay systems with hysteresis: asymptotic behaviour of solutions, Nonlinear Anal. Theory Methods Appl., 2008, vol. 69, no. 1, pp. 363–391.

    Article  MathSciNet  MATH  Google Scholar 

  94. Logemann, H. and Ryan, E.P., Time-varying and adaptive integral control of infinite-dimensional regular linear systems with input nonlinearities, SIAM J. Control Optim., 2000, vol. 38, no. 4, pp. 1120–1144.

    Article  MathSciNet  MATH  Google Scholar 

  95. Logemann, H. and Mawby, A.D., Low-gain integral control of infinite-dimensional regular linear systems subject to input hysteresis, Adv. Math. Syst. Theory, Colonius, F., Helmke, U., Prätzel-Wolters, D., and Wirth, F., Eds., Boston: Birkhäuser, 2000, pp. 255–293.

    Google Scholar 

  96. Yakubovich, V.A., Frequency-domain criteria for oscillation in nonlinear systems with one stationary nonlinear component, Sib. Math. J., 1974, vol. 14 (1973), no. 5, pp. 768–788.

    Article  MATH  Google Scholar 

  97. Popov, E.P., Teoriya nelineinykh sistem avtomaticheskogo regulirovaniya i upravleniya (Theory of Nonlinear Automatic Control Systems), Moscow: Nauka, 1978.

    Google Scholar 

  98. Tsypkin, Ya.Z., Teoriya releinykh sistem avtomaticheskogo regulirovaniya (Theory of Relay Automatic Control Systems), Moscow: Gos. Izd. Tekh. Teor. Lit., 1955.

    Google Scholar 

  99. Tsypkin, Ya.Z., Releinye avtomaticheskie sistemy (Relay Automatic Systems), Moscow: Nauka, 1974.

    Google Scholar 

  100. Caughey, T.K., Sinusoidal excitation of a system with bilinear hysteresis, J. Appl. Mech., 1960, vol. 27, no. 4, pp. 640–643.

    Article  MathSciNet  Google Scholar 

  101. Caughey, T.K., Random excitation of a system with bilinear hysteresis, J. Appl. Mech., 1960, vol. 27, no. 4, pp. 649–652.

    Article  MathSciNet  Google Scholar 

  102. Leonov, G.A. and Filina, M.Yu., Necessary conditions for the global stability of differential systems with hysteresis right-hand side, in Problemy sovremennoi teorii periodicheskikh dvizhenii (Problems in Modern Theory of Periodic Motions), Izhevsk: Inst. Komp. Issled., 1981, pp. 44–49.

    Google Scholar 

  103. Leonov, G.A. and Teshev, V.A., A frequency criterion of stability of systems of differential equations with hysteretic functions, Differ. Uravn., 1987, vol. 23, no. 4, pp. 718–719.

    MATH  Google Scholar 

  104. Teshev, V.A. and Shumafov, M.M., Global asymptotic stability of solutions of second-order equations with a hysteresis nonlinearity, Tr. Fiz. Obshch. Resp. Adygeya, 1997, no. 2, pp. 61–69.

    Google Scholar 

  105. Teshev, V.A., Shepelyavyi, A.I., and Shumafov, M.M., Frequency criterion for the stabilization of systems with hysteresis nonlinearities by a harmonic input, Nelineinye dinamicheskie sistemy: sbornik statei (Nonlinear Dynamical Systems: Collection of Papers), St.-Petersburg, 1997, pp. 261–280.

    Google Scholar 

  106. Teshev, V.A. and Shumafov, M.M., Frequency criterion for the dichotomy of nonlinear control systems with hysteresis nonlinearities, Tr. Fiz. Obshch. Resp. Adygeya, 1999, no. 4, pp. 34–39.

    Google Scholar 

  107. Shumafov, M.M., Stabilization of systems with hysteresis nonlinearities by a harmonic input, Vestn. Adygeisk. Gos. Univ. Ser. Estest.-Mat. Tekh. Nauki, 2012, no. 3, pp. 11–19.

    Google Scholar 

  108. Shumafov, M.M., Stability of systems of differential equations with hysteresis nonlinearities, Vestn. Adygeisk. Gos. Univ. Ser. Estest.-Mat. Tekh. Nauki, 2012, no. 3, pp. 20–31.

    Google Scholar 

  109. Neimark, Yu.I., Periodic modes and stability in relay systems, Avtom. Telemekh., 1953, vol. 14, no. 5, pp. 656–669.

    Google Scholar 

  110. Netushil, A.V., Self-induced oscillations in systems with negative hysteresis, Trudy 5-i mezhdunarodnoi konferentsii po nelineinym kolebaniyam (Proc. 5th Int. Conf. on Nonlinear Oscillations), Kiev: Akad. Nauk Ukr. SSR, 1970, vol. 4 pp. 393–396.

    Google Scholar 

  111. Krasnosel’skii, A.M., Forced oscillations in systems with hysteresis nonlinearities, Sov. Dokl. Phys., 1987, vol. 32, pp. 98–100.

    Google Scholar 

  112. Rachinskii, D.I., Asymptotic stability of large-amplitude oscillations in systems with hysteresis, Nonlinear Differ. Equations Appl., 1999, vol. 6, no. 3, pp. 267–288.

    Article  MathSciNet  MATH  Google Scholar 

  113. Rachinskii, D.I., Test for the existence of oscillations in systems with hysteresis, Izv. Ross. Akad. Estestv. Nauk Ser. MMMIU, 2000, vol. 4, no. 1–2, pp. 235–248.

    Google Scholar 

  114. Krasnoselskii, A.M. and Rachinskii, D.I., On a bifurcation governed by hysteresis nonlinearity, Nonlinear Differ. Equations Appl., 2002, vol. 9, no. 1, pp. 93–115.

    Article  MathSciNet  MATH  Google Scholar 

  115. Krasnoselskii, A.M. and Rachinskii, D.I., On the continua of cycles in systems with hysteresis, Dokl. Math., 2001, vol. 63, no. 3, pp. 339–344.

    MathSciNet  Google Scholar 

  116. Krasnoselskii, A.M. and Rachinskii, D.I., On a nonlocal condition for existence of cycles of hysteresis systems, Autom. Remote Control, 2003, vol. 64, no. 2, pp. 231–251.

    Article  MathSciNet  Google Scholar 

  117. Rachinskii, D.I., On natural continua of periodic solutions of the systems with hysteresis, Autom. Remote Control, 2003, vol. 64, no. 3, pp. 420–438.

    Article  MathSciNet  Google Scholar 

  118. Rachinskii, D.I., On bifurcation of large-amplitude stable cycles for equations with hysteresis, Autom. Remote Control, 2004, vol. 65, no. 12, pp. 1915–1937.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Leonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, G.A., Shumafov, M.M., Teshev, V.A. et al. Differential Equations with Hysteresis Operators. Existence of Solutions, Stability, and Oscillations. Diff Equat 53, 1764–1816 (2017). https://doi.org/10.1134/S0012266117130055

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266117130055

Navigation