Differential Equations

, Volume 53, Issue 13, pp 1671–1702 | Cite as

Global Problems for Differential Inclusions. Kalman and Vyshnegradskii Problems and Chua Circuits

  • G. A. Leonov
  • N. V. Kuznetsov
  • M. A. Kiseleva
  • R. N. Mokaev
Control Theory


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marchaud, A., Sur les champs de demi-droites et les équations différentielles du premier ordre, Bull. Soc. Math. France, 1934, vol. 62, pp. 1–38.MathSciNetMATHGoogle Scholar
  2. 2.
    Marchaud, A., Sur les champs continus de demi-cones convexes et leurs integrales, Compos. Math., 1936, vol. 3, pp. 89–127.MATHGoogle Scholar
  3. 3.
    Zaremba, S.C., Sur une extension de la notion d’équation différentielle, C. R. Acad. Sci. Paris, 1934, vol. 199, no. 10, pp. 545–548.MATHGoogle Scholar
  4. 4.
    Zaremba, S.C., Sur les équations au paratingent, Bull. Sci. Math., 1936, vol. 60, no. 2, pp. 139–160.MATHGoogle Scholar
  5. 5.
    Agrachev, A.A. and Sachkov, Y.L., Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, vol. 87: Control Theory and Optimization, II, Berlin: Springer-Verlag, 2004.Google Scholar
  6. 6.
    Bennett, S., A History of Control Engineering 1930–1955, Stevenage, UK: Peter Peregrinus, Ltd., 1993.MATHCrossRefGoogle Scholar
  7. 7.
    Brogliato, B., Nonsmooth Mechanics: Models, Dynamics and Control, Berlin: Springer-Verlag, 1999.MATHCrossRefGoogle Scholar
  8. 8.
    Pfeiffer, F. and Glocker, C., Multibody Dynamics with Unilateral Contacts, New York: Wiley, 1996.MATHCrossRefGoogle Scholar
  9. 9.
    Utkin, V., Sliding Modes in Control and Optimization, Berlin: Springer-Verlag, 1992.MATHCrossRefGoogle Scholar
  10. 10.
    Emel’yanov, S.V., Sistemy avtomaticheskogo upravleniya s peremennoi strukturoi (Automatic Control Systems of Variable Structure), Moscow: Nauka, 1967.Google Scholar
  11. 11.
    Plestan, F., Shtessel, Y., Bregeault, V., and Poznyak, A., New methodologies for adaptive sliding mode control, Int. J. Control, 2010, vol. 83, no. 9, pp. 1907–1919.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Poznyak, A.S., Yu, W., Sanchez, E.N., and Perez, J.P., Nonlinear adaptive trajectory tracking using dynamic neural networks, IEEE Trans. Neural Networks, 1999, vol. 10, no. 6, pp. 1402–1411.CrossRefGoogle Scholar
  13. 13.
    Edwards, C. and Spurgeon, S., Sliding Mode Control: Theory and Applications, London: Taylor & Francis, 1998.MATHGoogle Scholar
  14. 14.
    Arkin, R.C., Behavior-Based Robotics, Cambridge: MIT Press, 1998.Google Scholar
  15. 15.
    Kloeden, P.E. and Marín-Rubio, P., Negatively invariant sets and entire trajectories of set-valued dynamical systems, Set-Valued Var. Anal., 2011, vol. 19, no. 1, pp. 43–57.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Goryacheva, I.G., Contact Mechanics in Tribology, vol. 61 of Solid Mechanics and Its Applications, Boston: Kluwer, 1998.MATHCrossRefGoogle Scholar
  17. 17.
    Goryacheva, I.G., Rajeev, P.T., and Farris, T.N., Wear in partial slip contact, J. Tribol., 2001, vol. 123, no. 4, pp. 848–856.CrossRefGoogle Scholar
  18. 18.
    Kolesnikov, V.I., Teplofizicheskie protsessy v metallopolimernykh tribosistemakh (Thermophysical Processes in Metal–Polymer Tribological Systems), Moscow: Nauka, 2003.Google Scholar
  19. 19.
    Kachanov, L.M., Osnovy teorii plastichnosti (Fundamentals of Plasticity Theory), Moscow: Nauka, 1969.Google Scholar
  20. 20.
    Polyakov, A. and Fridman, L., Stability notions and Lyapunov functions for sliding mode control systems, J. Franklin Inst., 2014, vol. 351, no. 4, pp. 1831–1865.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Orlov, Y.V., Discontinuous systems: Lyapunov Analysis and Robust Synthesis under Uncertainty Conditions, New York: Springer Science & Business Media, 2008.Google Scholar
  22. 22.
    Kershtein, I.M., Klyushnikov, V.D., Lomakin, E.V., and Shesterikov, S.A., Osnovy eksperimental’noi mekhaniki razrusheniya (Foundations of Experimental Fracture Mechanics), Moscow: Mosk. Gos. Univ., 1989.Google Scholar
  23. 23.
    Boiko, I., Discontinuous Control Systems: Frequency-Domain Analysis and Design, New York: Springer Science & Business Media, 2008.MATHGoogle Scholar
  24. 24.
    Dolgopolik, M. and Fradkov, A., Nonsmooth and discontinuous speed-gradient algorithms, Nonlinear Anal.: Hybrid Syst., 2017, vol. 25, pp. 99–113.MathSciNetMATHGoogle Scholar
  25. 25.
    Flugge-Lotz, I., Discontinuous Automatic Control of Missiles, Stanford: Stanford Univ., Division of Eng. Mech., 1950.Google Scholar
  26. 26.
    Flugge-Lotz, I., Discontinuous Automatic Control, Princeton: Princeton University Press, 1953.MATHCrossRefGoogle Scholar
  27. 27.
    Anosov, D.V., Stability of the equilibrium positions in relay systems, Autom. Remote Control, 1959, vol. 20, no. 2, pp. 130–143.MATHGoogle Scholar
  28. 28.
    Neimark, Yu.I., On the sliding mode in relay automatic control systems, Avtom. Telemekh., 1957, vol. 18, pp. 27–33.Google Scholar
  29. 29.
    Venets, V.I., Differential inclusions in convex problems, Autom. Remote Control, 1980, no. 40, pp. 1261–1269.MATHGoogle Scholar
  30. 30.
    Solodovnikov, V.V., Osnovy avtomaticheskogo regulirovaniya. Teoriya (Foundations of Automatic Control: Theory), Moscow: Gos. Izd. Mashinostr., 1954.Google Scholar
  31. 31.
    Besekerskii, V.A. and Popov, E.P., Teoriya sistem avtomaticheskogo regulirovaniya (Theory of Automatic Control Systems), Moscow: Nauka, 1972.MATHGoogle Scholar
  32. 32.
    Khalil, H.K., Nonlinear Systems, Upper Saddle River: Prentice Hall, 2002.MATHGoogle Scholar
  33. 33.
    Tsypkin, Y.Z., Relay Control Systems, Cambridge: Cambridge Univ. Press, 1984.MATHGoogle Scholar
  34. 34.
    Hartog, J.D., Forced vibrations with combined viscous and coulomb damping, The London, Edinburgh, Dublin Philos. Mag. J. Sci., 1930, vol. 9, no. 59, pp. 801–817.MATHCrossRefGoogle Scholar
  35. 35.
    Keldysh, M.V., On dumpers with nonlinear characteristic, Tr. TsAGI, 1944, vol. 557, pp. 26–37.Google Scholar
  36. 36.
    Lur’e, A.I. and Postnikov, V.N., Concerning the theory of stability of regulating systems, Prikl. Mat. Mekh., 1944, vol. 8, no. 3, pp. 246–248.MathSciNetMATHGoogle Scholar
  37. 37.
    Bulgakov, B.V., Maintained oscillations of automatically controlled systems, Prikl. Mat. Mekh., 1943, vol. 7, no. 2, pp. 97–108.MathSciNetMATHGoogle Scholar
  38. 38.
    Andronov, A.A. and Bautin, N.N., Motion of a neutral plane equipped with an autopilot and the theory of point transformations of surfaces, Dokl. Akad. Nauk SSSR, 1944, vol. 43, no. 5, pp. 197–201.Google Scholar
  39. 39.
    Andronov, A.A. and Bautin, N.N., Stabilisation de route d’un avion neutre par autopilote ayant un vitesse constante et à zone d’insensibilite, C. R. (Dokl.) Acad. Sci. URSS, 1945, vol. 46, no. 4, pp. 143–146.MathSciNetMATHGoogle Scholar
  40. 40.
    Andronov, A.A. and Bautin, N.N., Theory of stabilization of a neutral plane by an autopilot with a constant velocity of the actuator: I, Izv. Akad. Nauk SSSR, Ser. Tekh. Nauk, 1955, no. 3, pp. 3–32.Google Scholar
  41. 41.
    Andronov, A.A. and Bautin, N.N., Theory of stabilization of a neutral plane by an autopilot with a constant velocity of the actuator: II, Izv. Akad. Nauk SSSR, Ser. Tekh. Nauk,, 1955, no. 6, pp. 54–71.Google Scholar
  42. 42.
    Yakubovich, V. A., Leonov, G.A., and Gelig, A.Kh., Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities, Singapore: World Sci., 2004.MATHCrossRefGoogle Scholar
  43. 43.
    Aizerman, M.A. and Gantmakher, F.R., Absolyutnaya ustoichivost’ reguliruemykh sistem (Absolute stability of Control Systems), Moscow: Akad. Nauk SSSR, 1963.MATHGoogle Scholar
  44. 44.
    Filippov, A.F., Differential equations with discontinuous right-hand side, Mat. Sb., 1960, vol. 51, no. 1, pp. 99–128.MathSciNetMATHGoogle Scholar
  45. 45.
    Aizerman, M.A. and Pyatnitskii, E.S., Foundations of a theory of discontinuous systems: I, Autom. Remote Control, 1974, vol. 35, pp. 1066–1079.MathSciNetMATHGoogle Scholar
  46. 46.
    Aubin, J.P. and Cellina, A., Differential Inclusions: Set-Valued Maps and Viability Theory, Berlin: Springer-Verlag, 1984.MATHCrossRefGoogle Scholar
  47. 47.
    Clarke, F.H., Ledyaev, Y.S., Stern, R.J., and Wolenski, P.R., Nonsmooth Analysis and Control Theory, Berlin: Springer-Verlag, 1998.MATHGoogle Scholar
  48. 48.
    Leine, R.I. and Nijmeijer, H., Differential Inclusion, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Berlin: Springer-Verlag, 2004.MATHCrossRefGoogle Scholar
  49. 49.
    Smirnov, G.V., Introduction to the Theory of Differential Inclusions, Graduate Studies in Mathematics, vol. 41, Providence: Amer. Math. Soc., 2002.Google Scholar
  50. 50.
    Gelig, A.Kh., Investigation of stability of nonlinear discontinuous automatic control systems with a nonunique equilibrium state, Autom. Remote Control, 1964, vol. 25, pp. 1413–148.MATHGoogle Scholar
  51. 51.
    Leonov, G.A., Stability of nonlinear controllable systems having a nonunique equilibrium position, Autom. Remote Control, 1971, vol. 32, no. 10, pp. 1547–1552.MathSciNetMATHGoogle Scholar
  52. 52.
    Vyshnegradskii, I.A., On direct action controllers, Izv. S.-Peterb. Tekhnol. Inst., 1877, pp. 21–62.Google Scholar
  53. 53.
    Andronov, A.A. and Maier, A.G., Vyshnegradskii problem in direct control theory: I, Avtom. Telemekh., 1947, vol. 8, no. 5, pp. 314–334.Google Scholar
  54. 54.
    Filippov, A. F., Differential Equations with Discontinuous Righthand Sides, Dordrecht: Kluwer, 1988.CrossRefGoogle Scholar
  55. 55.
    Wažewski, T., Sur une condition équivalente à l’équation au contingent, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys, 1961, no. 9, pp. 865–867.MathSciNetMATHGoogle Scholar
  56. 56.
    Cortes, J., Discontinuous dynamical systems, IEEE Control Syst., 2008, vol. 28, no. 3, pp. 36–73.MathSciNetCrossRefGoogle Scholar
  57. 57.
    Krasovskij, N.N., Stability of Motion: Applications of Lyapunov’s Second Method to Differential Systems and Equations with Delay, Stanford University Press, 1963.Google Scholar
  58. 58.
    Krasovskij, N.N. and Subbotin, A.I., Game-Theoretical Control Problems, New York: Springer, 1987.MATHGoogle Scholar
  59. 59.
    Hermes, H., Discontinuous Vector Fields and Feedback Control, New York: Academic, 1967.MATHGoogle Scholar
  60. 60.
    Filippov, A.F., On certain questions in the theory of optimal control, J. Soc. Ind. Appl. Math. Ser. A, 1962, vol. 1, no. 1, pp. 76–84.MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Boltyanskii, V.G., Matematicheskie metody optimal’nogo upravleniya (Mathematical Methods of Optimal Control), Moscow: Nauka, 1969.Google Scholar
  62. 62.
    Tolstonogov, A., Differential Inclusions in a Banach Space, Berlin: Springer-Verlag, 2000.MATHCrossRefGoogle Scholar
  63. 63.
    Pliss, V.A., Nekotorye problemy teorii ustoichivosti dvizheniya (Some Problems of Motion Stability Theory), Leningrad: Leningr. Gos. Univ., 1958.Google Scholar
  64. 64.
    Polyakov, A., Discontinuous Lyapunov functions for nonasymptotic stability analysis, IFAC Proc. Volumes, 2014, vol. 47, no. 3, pp. 5455–5460.CrossRefGoogle Scholar
  65. 65.
    Kuznetsov, N., Kuznetsova, O., Leonov, G., and Vagaitsev, V., Analytical-numerical localization of hidden attractor in electrical Chua’s circuit, Lect. Notes Electr. Eng., 2013, vol. 174, no. 4, pp. 149–158.MATHCrossRefGoogle Scholar
  66. 66.
    Kuznetsov, N.V., Kuznetsova, O.A., Leonov, G.A., and Vagaitsev, V.I., Hidden attractor in Chua’s circuits, ICINCO 2011—Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics, 2011, vol. 1, pp. 279–283.MATHGoogle Scholar
  67. 67.
    Leonov, G.A., Kiseleva, M.A., Kuznetsov, N.V., and Kuznetsova, O.A., Discontinuous differential equations: comparison of solution definitions and localization of hidden Chua attractors, IFACPapersOnLine, 2015, vol. 48, no. 11, pp. 408–413.Google Scholar
  68. 68.
    Kuznetsov, N.V., Kuznetsova, O.A., Leonov, G.A., Mokaev, T.N., and Stankevich, N.V., Hidden attractors localization in Chua circuit via the describing function method, IFAC-PapersOnLine, 2017, vol. 50, no. 1, pp. 2651–2656.CrossRefGoogle Scholar
  69. 69.
    Kuznetsov, N.V., Leonov, G.A., and Vagaitsev, V.I., Analytical-numerical method for attractor localization of generalized Chua’s system, IFAC-PapersOnLine, 2010, vol. 4, no. 1, pp. 29–33.Google Scholar
  70. 70.
    Leonov, G.A., Kuznetsov, N.V., and Vagaitsev, V.I., Localization of hidden Chua’s attractors, Phys. Lett. A, 2011, vol. 375, no. 23, pp. 2230–2233.MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Leonov, G.A., Kuznetsov, N.V., and Vagaitsev, V.I., Hidden attractor in smooth Chua systems, Phys. D (Amsterdam, Neth.), 2012, vol. 241, no. 18, pp. 1482–1486.MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Leonov, G.A. and Kuznetsov, N.V., Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits, Int. J. Bifurcation Chaos Appl. Sci. Eng., 2013, 23, no. 1, art. no. 1330002.Google Scholar
  73. 73.
    Leonov, G.A., Kuznetsov, N.V., and Mokaev, T.N., Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion, Eur. Phys. J. Spec. Top., 2015, vol. 224, no. 8, pp. 1421–1458.Google Scholar
  74. 74.
    Kuznetsov, N.V., Hidden attractors in fundamental problems and engineering models: A short survey, Lect. Notes Electr. Eng., 2016, vol. 371, pp. 13–25 (Plenary lecture at the International Conference on Advanced Engineering Theory and Applications 2015).CrossRefGoogle Scholar
  75. 75.
    Sommerfeld, A., Beitrage zum dynamischen Ausbau der Festigkeitslehre, Z. d. Vereins deutscher Ingenieure, 1902, vol. 46, pp. 391–394.MATHGoogle Scholar
  76. 76.
    Kiseleva, M.A., Kuznetsov, N.V., and Leonov, G.A., Hidden attractors in electromechanical systems with and without equilibria, IFAC-PapersOnLine, 2016, vol. 49, no. 14, pp. 51–55.CrossRefGoogle Scholar
  77. 77.
    Leonov, G.A. and Kuznetsov, N.V., Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems, Dokl. Math., 2011, vol. 84, no. 1, pp. 475–481.MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Aizerman, M.A., On a problem concerning the stability in the large of dynamical systems, Uspekhi Mat. Nauk, 1949, vol. 4, no. 4, pp. 187–188.MathSciNetMATHGoogle Scholar
  79. 79.
    Kalman, R.E., Physical and mathematical mechanisms of instability in nonlinear automatic control systems, Trans. ASME J., 1957, vol. 79, no. 3, pp. 553–566.MathSciNetGoogle Scholar
  80. 80.
    Hilbert, D., Mathematical problems, Bull. Amer. Math. Soc., 1901–1902, no. 8, vol. 437–479.Google Scholar
  81. 81.
    Bautin, N.N., On the number of limit cycles generated on varying the coefficients from a focus or centre type equilibrium state, Dokl. Akad. Nauk SSSR, 1939, vol. 24, no. 7, pp. 668–671.MathSciNetGoogle Scholar
  82. 82.
    Kuznetsov, N.V., Kuznetsova, O.A., and Leonov, G.A., Visualization of four normal size limit cycles in two-dimensional polynomial quadratic system, Differ. Equations Dyn. Syst., 2013, vol. 21, nos. 1–2, pp. 29–34.MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Leonov, G. and Kuznetsov, N., On differences and similarities in the analysis of Lorenz, Chen, and Lu systems, Appl. Math. Comput., 2015, vol. 256, pp. 334–343.MATHCrossRefGoogle Scholar
  84. 84.
    Leonov, G. and Kuznetsov, N., Localization of hidden oscillations in dynamical systems (plenary lecture), 4th International Scientific Conference on Physics and Control, 2009, http://www.math. Scholar
  85. 85.
    Kiseleva, M., Kudryashova, E., Kuznetsov, N., Kuznetsova, O., Leonov, G., Yuldashev, M., and Yuldashev, R., Hidden and self-excited attractors in Chua circuit: synchronization and SPICE simulation, Int. J. Parallel, Emergent, Distrib. Syst., 2018, doi:10.1080/17445760.2017.1334776.Google Scholar
  86. 86.
    Sharma, P., Shrimali, M., Prasad, A., Kuznetsov, N., and Leonov, G., Controlling dynamics of hidden attractors, Int. J. Bifurcation Chaos Appl. Sci. Eng., vol. 25, no. 4, art. no. 1550061.Google Scholar
  87. 87.
    Sharma, P., Shrimali, M., Prasad, A., Kuznetsov, N., and Leonov, G., Control of multistability in hidden attractors, Eur. Phys. J.: Spec. Top., 2015, vol. 224, no. 8, pp. 1485–1491.Google Scholar
  88. 88.
    Zhang, X. and Chen, G., Constructing an autonomous system with infinitely many chaotic attractors, Chaos: Interdiscip. J. Nonlin. Sci., 2017, vol. 27, no. 7, art. no. 071101.Google Scholar
  89. 89.
    Li, Q., Zeng, H., and Yang, X.-S., On hidden twin attractors and bifurcation in the Chua’s circuit, Nonlinear Dyn., 2014, vol. 77, nos. 1–2, pp. 255–266.MathSciNetCrossRefGoogle Scholar
  90. 90.
    Burkin, I.M. and Khien, N.N., Analytical-numerical methods of finding hidden oscillations in multidimensional dynamical systems, Differ. Equations, 2014, vol. 50, no. 13, vol. 1695–1717.Google Scholar
  91. 91.
    Li, C. and Sprott, J.C., Coexisting hidden attractors in a 4-D simplified Lorenz system, Int. J. Bifurcation Chaos Appl. Sci. Eng., vol. 24, no. 3, art. no. 1450034.Google Scholar
  92. 92.
    Chen, G., Chaotic systems with any number of equilibria and their hidden attractors, 4th IFAC Conference on Analysis and Control of Chaotic Systems (plenary lecture), 2015, gchen/pdf/CHEN IFAC2015.pdfGoogle Scholar
  93. 93.
    Saha, P., Saha, D., Ray, A., and Chowdhury, A., Memristive non-linear system and hidden attractor, Eur. Phys. J.: Spec. Top., 2015, vol. 224, no. 8, pp. 1563–1574.Google Scholar
  94. 94.
    Feng, Y. and Pan, W., Hidden attractors without equilibrium and adaptive reduced-order function projective synchronization from hyperchaotic Rikitake system, Pramana, 2017, vol. 88, no. 4, p.62.CrossRefGoogle Scholar
  95. 95.
    Zhusubaliyev, Z., Mosekilde, E., Churilov, A., and Medvedev, A., Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay, Eur. Phys. J.: Spec. Top., 2015, vol. 224, no. 8, vol. 1519–1539.Google Scholar
  96. 96.
    Danca, M.-F., Hidden transient chaotic attractors of Rabinovich–Fabrikant system, Nonlinear Dyn., 2016, vol. 86, no. 2, pp. 1263–1270.MathSciNetCrossRefGoogle Scholar
  97. 97.
    Kuznetsov, A.P., Kuznetsov, S.P., Mosekilde, E., and Stankevich, N.V., Co-existing hidden attractors in a radio-physical oscillator system, J. Phys. A: Math. Theor., 2015, vol. 48, art. no. 125101.Google Scholar
  98. 98.
    Chen, M., Li, M., Yu, Q., Bao, B., Xu, Q., andWang, J., Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit, Nonlinear Dyn., 2015, vol. 81, pp. 215–226.MathSciNetCrossRefGoogle Scholar
  99. 99.
    Pham, V.-T., Rahma, F., Frasca, M., and Fortuna, L., Dynamics and synchronization of a novel hyperchaotic system without equilibrium, Int. J. Bifurcation Chaos Appl. Sci. Eng., vol. 24, no. 6, art. no. 1450087.Google Scholar
  100. 100.
    Ojoniyi, O.S. and Njah, A.N., A 5D hyperchaotic Sprott B system with coexisting hidden attractors, Chaos Solitons Fractals, 2016, vol. 87, pp. 172–181.MathSciNetMATHCrossRefGoogle Scholar
  101. 101.
    Rocha, R. and Medrano-T, R.O., Finding hidden oscillations in the operation of nonlinear electronic circuits, Electr. Lett., 2016, vol. 52, no. 12, pp. 1010–1011.CrossRefGoogle Scholar
  102. 102.
    Borah, M. and Roy, B.K., Hidden attractor dynamics of a novel non-equilibrium fractional-order chaotic system and its synchronisation control, 2017 Indian Control Conference (ICC), 2017, pp. 450–455.CrossRefGoogle Scholar
  103. 103.
    Wei, Z., Pham, V.-T., Kapitaniak, T., and Wang, Z., Bifurcation analysis and circuit realization for multiple-delayed Wang–Chen system with hidden chaotic attractors, Nonlinear Dyn., 2016, vol. 85, no. 3, pp. 1635–1650.MathSciNetMATHCrossRefGoogle Scholar
  104. 104.
    Pham, V.-T., Volos, C., Jafari, S., Vaidyanathan, S., Kapitaniak, T., and Wang, X., A chaotic system with different families of hidden attractors, Int. J. Bifurcation Chaos Appl. Sci. Eng., 2016, vol. 26, no. 8, art. no. 1650139.Google Scholar
  105. 105.
    Jafari, S., Pham, V.-T., Golpayegani, S., Moghtadaei, M., and Kingni, S., The relationship between chaotic maps and some chaotic systems with hidden attractors, Int. J. Bifurcation Chaos Appl. Sci. Eng., 2016, vol. 26, no. 13, art. no. 1650211.Google Scholar
  106. 106.
    Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N., Leonov, G., and Prasad, A., Hidden attractors in dynamical systems, Phys. Rep., 2016, vol. 637, pp. 1–50.MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    Singh, J. and Roy, B., Multistability and hidden chaotic attractors in a new simple 4-D chaotic system with chaotic 2-torus behaviour, Int. J. Dyn. Control, 2017. doi: 10.1007/s40435-017-0332-8.Google Scholar
  108. 108.
    Zhang, G., Wu, F., Wang, C., and Ma, J., Synchronization behaviors of coupled systems composed of hidden attractors, Int. J. Mod. Phys. B, vol. 31, art. num. 1750180.Google Scholar
  109. 109.
    Messias, M. and Reinol, A., On the formation of hidden chaotic attractors and nested invariant tori in the Sprott A system, Nonlinear Dyn., 2017, vol. 88, no. 2, pp. 807–821.MATHCrossRefGoogle Scholar
  110. 110.
    Brzeski, P., Wojewoda, J., Kapitaniak, T., Kurths, J., and Perlikowski, P., Sample-based approach can outperform the classical dynamical analysis—experimental confirmation of the basin stability method, Sci. Rep., 2017, no. 7, art. no. 6121.Google Scholar
  111. 111.
    Wei, Z., Moroz, I., Sprott, J., Akgul, A., and Zhang, W., Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo, Chaos, vol. 27, no. 3, art. no. 033101.Google Scholar
  112. 112.
    Chaudhuri, U. and Prasad, A., Complicated basins and the phenomenon of amplitude death in coupled hidden attractors, Phys. Lett. A, 2014, vol. 378, no. 9, pp. 713–718.MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    Jiang, H., Liu, Y., Wei, Z., and Zhang, L., Hidden chaotic attractors in a class of two-dimensional maps, Nonlinear Dyn., 2016, vol. 85, no. 4, pp. 2719–2727.MathSciNetCrossRefGoogle Scholar
  114. 114.
    Volos, C., Pham, V.-T., Zambrano-Serrano, E., Munoz-Pacheco, J.M., Vaidyanathan, S., and Tlelo-Cuautle, E., Analysis of a 4-D hyperchaotic fractional-order memristive system with hidden attractors, Advances in Memristors, Memristive Devices and Systems, Berlin: Springer-Verlag, 2017, pp. 207–235.CrossRefGoogle Scholar
  115. 115.
    Rocha, R. and Medrano-T, R.-O., Stablity analysis and mapping of multiple dynamics of Chua’s circuit in full-four parameter space, Int. J. Bifurcation Chaos Appl. Sci. Eng., 2015, vol. 25, art. no. 1530037.Google Scholar
  116. 116.
    Bao, B., Jiang, P., Wu, H., and Hu, F., Complex transient dynamics in periodically forced memristive Chua’s circuit, Nonlinear Dyn., 2015, vol. 79, pp. 2333–2343.MathSciNetCrossRefGoogle Scholar
  117. 117.
    Andrievsky, B.R., Kuznetsov, N.V., Leonov, G.A., and Seledzhi, S.M., Hidden oscillations in stabilization system of flexible launcher with saturating actuators, IFAC Proceedings Volumes, 2013, vol. 46, no. 19, pp. 37–41.CrossRefGoogle Scholar
  118. 118.
    Andrievsky, B.R., Kuznetsov, N.V., Leonov, G.A., and Pogromsky, A., Hidden oscillations in aircraft flight control system with input saturation, IFAC Proceedings Volumes, 2013, vol. 46, no. 12, pp. 75–79.CrossRefGoogle Scholar
  119. 119.
    Leonov, G.A., Kuznetsov, N.V., Kiseleva, M.A., Solovyeva, E.P., and Zaretskiy, A.M., Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor, Nonlinear Dyn., 2014, vol. 77, nos. 1–2, pp. 277–288.CrossRefGoogle Scholar
  120. 120.
    Danca, M.-F., Kuznetsov, N., and Chen, G., Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system, Nonlinear Dyn., 2017, vol. 88, pp. 791–805.MathSciNetCrossRefGoogle Scholar
  121. 121.
    Kuznetsov, N., Leonov, G., Yuldashev, M., and Yuldashev, R., Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE, Commun. Nonlinear Sci. Numer. Simul., 2017, vol. 51, pp. 39–49.CrossRefGoogle Scholar
  122. 122.
    Chen, G., Kuznetsov, N., Leonov, G., and Mokaev, T., Hidden attractors on one path: Glukhovsky–Dolzhansky, Lorenz, and Rabinovich systems, Int. J. Bifurcation Chaos Appl. Sci. Eng., vol. 27, no. 8, art. no. 1750115.Google Scholar
  123. 123.
    Danca, M.-F. and Kuznetsov, N., Hidden chaotic sets in a Hopfield neural system, Chaos Solitons Fractals, 2017, vol. 103, pp. 144–150.MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Piiroinen, P.T. and Kuznetsov, Y.A., An event-driven method to simulate Filippov systems with accurate computing of sliding motions, ACM Trans. Math. Software (TOMS), 2008, vol. 34, no. 3, p.13.MathSciNetMATHCrossRefGoogle Scholar
  125. 125.
    Kiseleva, M.A. and Kuznetsov, N.V., Coincidence of Gelig-Leonov-Yakubovich, Filippov, and Aizerman–Pyatnitskii definitions, Vestn. St. Petersb. Univ. Math., 2015, vol. 48, no. 2, pp. 66–71.MATHCrossRefGoogle Scholar
  126. 126.
    Barabanov, N.E., On the Kalman problem, Sib. Math. J., 1988, vol. 29, no. 3, pp. 333–341.MATHCrossRefGoogle Scholar
  127. 127.
    Fitts, R.E., Two counterexamples to Aizerman’s conjecture, IEEE Trans. Automat. Control, 1966, vol. 11, no. 3, pp. 553–556.CrossRefGoogle Scholar
  128. 128.
    Bernat, J. and Llibre, J., Counterexample to Kalman and Markus–Yamabe conjectures in dimension larger than 3, Dyn. Contin. Discrete Impuls. Syst., 1996, vol. 2, no. 3, pp. 337–379.MathSciNetMATHGoogle Scholar
  129. 129.
    Meisters, G., A biography of the Markus–Yamabe conjecture, gmeisters1/papers/HK1996.pdf.Google Scholar
  130. 130.
    Glutsyuk, A.A., Meetings of the Moscow Mathematical Society (1997), Russian Math. Surveys, 1998, vol. 53, no. 2, pp. 413–417.MathSciNetCrossRefGoogle Scholar
  131. 131.
    Andronov, A.A., Vitt, E.A., and Khaikin, S.E., Theory of Oscillators, Oxford: Pergamon, 1966.MATHGoogle Scholar
  132. 132.
    Leonov, G.A., Bragin, V.O., and Kuznetsov, N.V., Algorithm for constructing counterexamples to the Kalman problem, Dokl. Math., 2010, vol. 82, no. 1, pp. 540–542.MATHCrossRefGoogle Scholar
  133. 133.
    Bragin, V.O., Vagaitsev, V.I., Kuznetsov, N.V., and Leonov, G.A., Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits, J. Comput. System Sci. Int., 2011, vol. 50, no. 4, pp. 511–543.MATHCrossRefGoogle Scholar
  134. 134.
    Leonov, G.A., Mathematical Problems of Control Theory: An Introduction, Singapore: World Sci., 2001.MATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • G. A. Leonov
    • 1
    • 2
  • N. V. Kuznetsov
    • 1
    • 2
  • M. A. Kiseleva
    • 1
    • 2
  • R. N. Mokaev
    • 1
    • 2
  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.University of JyväskyläJyväskyläFinland

Personalised recommendations