Satellite Control Using Magnetic Moments: Controllability and Stabilization Algorithms

Abstract

The stabilization of the relative equilibrium of a satellite moving in a circular orbit, which is equipped with magnetic orientation system. It is shown that the linearized system of equations of motion belongs to a special class of linear time-varying systems, reducible to time-invariant ones. For obtained time-invariant system, controllability is analyzed, and the optimal stabilization algorithm based on the LQR method is constructed. The results of numerical simulation demonstrate the efficiency of the proposed approach.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Pittelkau, M.E., Optimal periodic control for spacecraft pointing and attitude determination, J. Guid. Control Dyn., 1993, vol. 16, no. 6, pp. 1078–1084.

    ADS  Article  Google Scholar 

  2. 2

    Arduini, C. and Baiocco, P., Active magnetic damping attitude control for gravity gradient stabilized spacecraft, J. Guid. Control Dyn., 1997, vol. 20, no. 1, pp. 117–122.

    ADS  Article  Google Scholar 

  3. 3

    Psiaki, M., Magnetic torque attitude control via asymptotic periodic linear quadratic regulation, J. Guid. Control Dyn., 2001, vol. 24, no. 2, pp. 386–304.

    ADS  Article  Google Scholar 

  4. 4

    Lovera, M., De Marchi, E., and Bittanti, S., Periodic attitude control techniques for small satellites with magnetic actuators, IEEE Trans. Control Syst. Technol., 2002, vol. 10, no. 1, pp. 90–95.

    Article  Google Scholar 

  5. 5

    Lovera, M. and Astolfi, A., Spacecraft attitude control using magnetic actuators, Automatica, 2004, vol. 40, pp. 1405–1414.

    MathSciNet  Article  Google Scholar 

  6. 6

    Lovera, M. and Astolfi, A., Global magnetic attitude control of spacecraft in the presence of gravity gradient, IEEE Trans. Aerosp. Electron. Syst., 2006, vol. 12, pp. 796–805.

    ADS  Article  Google Scholar 

  7. 7

    Rehanoglu, M. and Hervas, J.R., Three-axis magnetic attitude control algorithm for small satellites, in Proc. of the 5th Int. Conf. on Recent Advance Technologies, Istanbul, 2011, pp. 897–902.

  8. 8

    Rodriquez-Vazquez, A.L., Martin-Prats, M.A., and Bernelli-Zazzera, F., Spacecraft magnetic attitude control using approximating sequence Riccati equations, IEEE Trans. Aerosp. Electron. Syst., 2015, vol. 51, no. 4, pp. 3374–3385.

    ADS  Article  Google Scholar 

  9. 9

    Ovchinnikov, M.Yu., Roldugin, D.S., Ivanov, D.S., and Penkov, V.I., Choosing control parameters for three axis magnetic stabilization in orbital frame, Acta Astronaut., 2015, vol. 116, pp. 74–77.

    Article  Google Scholar 

  10. 10

    Ovchinnikov, M.Yu., Pen’kov, V.I., Roldugin, D.S., and Ivanov, D.S., Magnitnye sistemy orientatsii malykh sputnikov (Magnetic Attitude Control Systems for Small Satellites), Moscow: IPM im. M.V. Keldysha, 2016. https://doi.org/10.20948/mono-2016-ovchinnikov

  11. 11

    Ivanov, D.S., Ovchinnikov, M.Yu., Penkov, V.I., et al., Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties, Acta Astronaut., 2017, vol. 132, pp. 103–110.

    ADS  Article  Google Scholar 

  12. 12

    Zhou, K., Huang, H., Wang, X., and Sun, L., Magnetic attitude control for Earth-pointing satellites in the presence of gravity gradient, Aerosp. Sci. Technol., 2016, vol. 60, pp. 115–123. https://doi.org/10.1016/j.ast.2016.11.003

    Article  Google Scholar 

  13. 13

    Sutherland, R., Kolmanovsky, I.K., and Girard, A.R., Attitude control of a 2U cubesat by magnetic and air drag torques, IEEE. Trans.Control Syst. Technol., 2017.

    Google Scholar 

  14. 14

    Ovchinnikov, M.Yu. Penkov, V.I., et al., Geomagnetic field models for satellite angular motion studies, Acta Astronaut., 2018, vol. 144, pp. 171–180. https://arxiv.org/ pdf/1707.04959.pdf

    ADS  Article  Google Scholar 

  15. 15

    Dipak, G., Bijoy, M., Bidul, T.N., and Manoranjan, S., Three-axis global magnetic attitude control of Earth-pointing satellites in circular orbit, Asian J. Control, 2017, vol. 19, no. 6, pp. 2028–2041. https://doi.org/10.1002/asjc.1506

    MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Yang, H., Spacecraft attitude and reaction wheel desaturation combined control method, IEEE Trans. Aerosp. Electron. Syst., 2017, vol. 53, no. 1, pp. 286–295.

    ADS  Article  Google Scholar 

  17. 17

    Kim, J., Jung, Y., and Bang, H., Linear time-varying model predictive control of magnetically actuated satellites in elliptic orbits, Acta Astronaut., 2018, vol. 151, pp. 791–804.

    ADS  Article  Google Scholar 

  18. 18

    Yang, Y., Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Approach, New York: CRC Press, Taylor & Francis Group, 2019.

    Google Scholar 

  19. 19

    Silani, E. and Lovera, M., Magnetic spacecraft attitude control: A survey and some new results, Control Eng. Practice, 2005, vol. 13, pp. 357–371.

    Article  Google Scholar 

  20. 20

    Sofyalı, A., Jafarov, E.M., and Wisniewski, R., Robust and global attitude stabilization of magnetically actuated spacecraft through sliding mode, Aerosp. Sci. Technol., 2018, vol. 76, pp. 91–104. https://doi.org/10.1016/j.ast.2018.01.022

    Article  Google Scholar 

  21. 21

    Bhat, S.P., Controllability of nonlinear time-varying systems: Application to spacecraft attitude control using magnetic actuation, IEEE Trans. Autom. Control, 2005, vol. 50, no. 11, pp. 1725–1735.

    MathSciNet  Article  Google Scholar 

  22. 22

    Yang, Y., Controllability of spacecraft using only magnetic torques, IEEE Trans. Aerosp. Electron. Syst., 2016, vol. 52, no. 2, pp. 955–962.

    ADS  Google Scholar 

  23. 23

    Beletskii, V.V., Dvizhenie iskusstvennogo sputnika otnositel’no tsentra mass (Artificial Satellite Motion Relative to Center of Mass), Moscow: Nauka, 1965.

  24. 24

    Wertz, J., Spacecraft Attitude Determination and Control, Dordrecht: D. Reidel, 1978.

    Google Scholar 

  25. 25

    Kalenova, V.I. and Morozov, V.M., Lineinye nestatsionarnye sistemy i ikh prilozheniya k zadacham mekhaniki (Linear Time-Varying Systems and Their Applications to Problems of Mechanics), Moscow: Fizmatlit, 2010.

  26. 26

    Kalenova, V.I. and Morozov, V.M., The reducibility of linear second-order time-varying systems with control and observation, J. Appl. Math. Mech., 2012, vol. 76, no. 4, pp. 413–422.

    MathSciNet  Article  Google Scholar 

  27. 27

    Kalenova, V.I. and Morozov, V.M., On the control of linear time-varying systems of a special form, J. Comput. Syst. Sci. Int., 2013, vol. 52, no. 3, pp. 333–341.

    MathSciNet  Article  Google Scholar 

  28. 28

    Bellman, R., Introduction to Matrix Analysis, New York: McGraw-Hill, 1960; Moscow: Nauka, 1969.

  29. 29

    Laub, A.J. and Arnold, W.F., Controllability and observability criteria for multivariable linear second order models, IEEE Trans. Autom. Control, 1984, vol. AC-29, no. 2, pp. 163–165.

    MathSciNet  Article  Google Scholar 

  30. 30

    Krasovskii, N.N., Teoriya upravleniya dvizheniem. Lineinye sistemy (Theory of Motion Control. Linear Systems), Moscow: Nauka, 1968.

  31. 31

    Roitenberg, Ya.N., Avtomaticheskoe upravlenie (Automatic Control), Moscow: Nauka, 1978.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. M. Morozov.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morozov, V.M., Kalenova, V.I. Satellite Control Using Magnetic Moments: Controllability and Stabilization Algorithms. Cosmic Res 58, 158–166 (2020). https://doi.org/10.1134/S0010952520030041

Download citation